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1. Introduction
In this document, we provide more implementation details, additional results and analysis of SCOPS.

2. Optimization Objectives
In the proposed method, we train the part segmentation network and the semantic part basis with several loss functions,

including geometric concentration loss Lc, equivariance loss Leqv and semantic consistency loss Lsc, with orthonomal con-
straint Lot. The final objective function is a linear combination of these loss functions,

Lall = λcLc + λeqvLeqv + λscLsc + λotLot. (1)

In all our experiments, the weighting coefficients (λc, λeqv, λsc, λot) are set to (0.1, 10, 100, 0.1). We obtain these weights
by conducting a coarse grid search on a subset of the CelebA dataset images [4].

3. Implementation Details of Equivariance Loss
For spatial transform, we apply random ±60◦ rotation, ±20% shifting, 0.3x− 2x scaling, as well as TPS transform with

5x5 grid and ±10% shifting for each control point. For color transform, we apply jittering to brightness (±30%), contrast
(±30%), saturation (±20%), and hue (±20%). In our experiments, we find that the performance gain is robust with respect
to a wide range of perturbation parameters.

4. Additional Experimental Analysis
4.1. On Using Different Part Number K

We evaluate the effects of selected part number K on the unaligned CelebA dataset [4]. We select K = 2, 4, 6, 8, 10 and
present the landmark estimation errors in Table 1. Note that with higher K the landmarks’ center are more robust to face
pose variations and thus lead to lower error rate. However, the performance seems to saturate after K = 8. The qualitative
results in Figure 1 also indicate the similar trend. When observing the part segmentation results for K = 8 and K = 10, the
additional parts seem to be not corresponding to any semantically meaningful area of the face.

Table 1: Landmark evaluation on CelebA with different K. Mean L2 distance.

SCOPS K = 2 K = 4 K = 6 K = 8 K = 10

Error (%) 25.46 21.76 15.92 15.01 14.71
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4.2. Feature Visualization of Learned Semantic Part Basis

We also show how the learned part basis improves on training progress in Figure 2. The top images show the part segmen-
tation results while the bottom show the t-SNE visualization [5] on the ImageNet feature of pixels and their corresponding
segmentation class i.e., the dot colors correspond to the part segmentation visualization colors, while the black dots represent
the background pixels. During the training process, we can see that the part segmentations are improving, while pixels with
similar ImageNet features are segmented as same part.

5. Quantitative Results on iCoseg
We present additional evaluation on the iCoseg dataset [1], which is a commonly used co-segmentation dataset. Follow

DFF [2], we select 5 image sets and train SCOPS with K = 4 on the images. We aggregate the parts and evaluate with
foreground segmentation IOU. The results show that SCOPS performs favorably against existing methods.

Table 2: Evaluation on iCoseg. Cosegmentation IoU comparing SCOPS to recent techniques on 5 image sets of iCoseg.

Subset Elephants Taj-Mahal Pyramids Gymnastics1 Statue of Liberty

Rubinstein [6] 63 48 57 94 70
DFF [2] 65 41 57 43 49
DFF-crf [2] 76 51 70 52 62

SCOPS 78.5 67.0 72.7 73.5 63.8
SCOPS-crf 81.5 66.0 75.0 81.5 65.7

6. Qualitative Results on PASCAL Objects
We present additional part segmentation visual results on different object class images obtained from the PASCAL

dataset [3]. In Figures 3-9, the results show that the proposed method works for both rigid (Figures 3-6) and non-rigid
(Figures 7-9) objects, where SCOPS produce part segments that are consistent across different instances with variations in
appearance, pose and camera viewpoints.

7. Additional Results on Unaligned CelebA and CUB
We provide more visual results on the unaligned CelebA dataset [4] and the CUB dataset [8] in Figures 10-13. The

results show that SCOPS is robust to pose and camera variations while having better boundary adherence compared to other
techniques.
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Figure 1: Effects of changing part number. We apply SCOPS on the unaligned CelebA dataset with the part number K
ranging from 2 to 10.
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Figure 2: Training progression. The top images show the part segmentation results while the bottom show the TSNE
visualization on the imagenet feature of pixels and their corresponding segmentation class. Black dots are the background
pixels. During the training process, we can see that the part segmentations are improving, while pixels with similar imagenet
features are segmented as same part.
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Figure 3: SCOPS visual results on car class images in the PASCAL dataset.
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Figure 4: SCOPS visual results on bus class images in the PASCAL dataset.
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Figure 5: SCOPS visual results on aeroplane class images in the PASCAL dataset.
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Figure 6: SCOPS visual results on motor class images in the PASCAL dataset.
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Figure 7: SCOPS visual results on sheep class images in the PASCAL dataset.
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Figure 8: SCOPS visual results on horse class images in the PASCAL dataset.
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Figure 9: SCOPS visual results on cow class images in the PASCAL dataset.
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Figure 10: Additional visual results on CelebA face images. SCOPS produce consistent part segments compared to existing
techniques. Also shown is the effect of different loss constraints.
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Figure 11: Additional visual results on CelebA face images. SCOPS produce consistent part segments compared to existing
techniques. Also shown is the effect of different loss constraints.
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Figure 12: Additional visual results on CUB bird images. SCOPS is robust to pose and camera variations while having
better boundary adherence compared to other techniques.

Im
ag

e
U

L
D

[9
,7

]
D

FF
[2

]
SC

O
PS

Figure 13: Additional visual results on CUB bird images. SCOPS is robust to pose and camera variations while having
better boundary adherence compared to other techniques.


