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Abstract
Computer vision can be understood as the ability to perform inference on image data.
Breakthroughs in computer vision technology are often marked by advances in inference
techniques, as even the model design is often dictated by the complexity of inference in
them. This thesis proposes learning based inference schemes and demonstrates applica-
tions in computer vision. We propose techniques for inference in both generative and
discriminative computer vision models.

Despite their intuitive appeal, the use of generative models in vision is hampered by the
difficulty of posterior inference, which is often too complex or too slow to be practical.
We propose techniques for improving inference in two widely used techniques: Markov
Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference
strategy is to learn separate discriminative models that assist Bayesian inference in a
generative model. Experiments on a range of generative vision models show that the
proposed techniques accelerate the inference process and/or converge to better solutions.

A main complication in the design of discriminative models is the inclusion of prior
knowledge in a principled way. For better inference in discriminative models, we pro-
pose techniques that modify the original model itself, as inference is simple evaluation of
the model. We concentrate on convolutional neural network (CNN) models and propose
a generalization of standard spatial convolutions, which are the basic building blocks of
CNN architectures, to bilateral convolutions. First, we generalize the existing use of bi-
lateral filters and then propose new neural network architectures with learnable bilateral
filters, which we call ‘Bilateral Neural Networks’. We show how the bilateral filtering
modules can be used for modifying existing CNN architectures for better image segmen-
tation and propose a neural network approach for temporal information propagation in
videos. Experiments demonstrate the potential of the proposed bilateral networks on a
wide range of vision tasks and datasets.

In summary, we propose learning based techniques for better inference in several
computer vision models ranging from inverse graphics to freely parameterized neural
networks. In generative vision models, our inference techniques alleviate some of the
crucial hurdles in Bayesian posterior inference, paving new ways for the use of model
based machine learning in vision. In discriminative CNN models, the proposed filter
generalizations aid in the design of new neural network architectures that can handle
sparse high-dimensional data as well as provide a way for incorporating prior knowledge
into CNNs.
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Zusammenfassung
Maschinelles Sehen kann als die Fähigkeit verstanden werden Bilddaten zu interpretie-
ren. Durchbrüche in diesem Feld gehen oft einher mit Fortschritten in Inferenztechniken,
da die Komplexität der Inferenz die Komplexität der verwendeten Modelle bestimmt.
Diese Arbeit beschreibt lernbasierte Inferenzmechanismen und zeigt Anwendungen im
maschinellen Sehen auf, wobei auf Techniken für Inferenz in sowohl generativen als auch
diskriminativen Modellen eingegangen wird.

Obwohl naheliegend und intuitiv verständlich, sind generative Modelle im maschi-
nellen Sehen häufig nur eingeschränkt nutzbar, da die Berechnung der A-Posteriori-
Wahrscheinlichkeiten oft zu komplex oder zu langsam ist, um praktikabel zu sein. Wir
beschreiben Techniken zur Verbesserung der Inferenz in zwei weit verbreiteten Inferenz-
verfahren: ‘Markov Chain Monte Carlo Sampling’ (MCMC) und ‘Message-Passing’. Die
vorgeschlagene Verbesserung besteht darin, mehrere diskriminative Modelle zu lernen,
die die Grundlage für Bayes’sche Inferenz über einem generativen Modell bilden. Wir
demonstrieren anhand einer Reihe von generativen Modellen, dass die beschriebenen
Techniken den Inferenzprozess beschleunigen und/oder zu besseren Lösungen konver-
gieren.

Eine der größten Schwierigkeiten bei der Verwendung von diskriminativen Model-
len ist die systematische Berücksichtigung von Vorkenntnissen. Zur Verbesserung der
Inferenz in diskriminativen Modellen schlagen wir Techniken vor die das ursprngliche
Modell selbst verndern, da Inferenz in diesen die schlichte Auswertung des Modells
ist. Wir konzentrieren uns auf ‘Convolutional Neural Networks’ (CNN) und schlagen
eine Generalisierung der Faltungsoperation vor, die den Kern jeder CNN-Architektur
bildet. Dazu verallgemeinern wir bilaterale Filter und präsentieren eine neue Netzarchi-
tektur mit trainierbaren bilateralen Filtern, die wir ‘Bilaterale Neuronale Netze’ nennen.
Wir zeigen, wie die bilateralen Filtermodule verwendet werden knnen, um existieren-
de Netzwerkarchitekturen fr Bildsegmentierung zu verbessern und entwickeln ein auf
Bilateralen Netzen basierendes Modell zur zeitlichen Integration von Information fr Vi-
deoanalyse. Experimente mit einer breiten Palette von Anwendungen und Datensätzen
zeigen das Potenzial der vorgeschlagenen bilateralen Netzwerke.

Zusammenfassend schlagen wir Lernmethoden für bessere Inferenz in einer Reihe
von Modellen des maschinellen Sehens vor, von inversen Renderern bis zu trainierba-
ren neuronalen Netzwerken. Unsere Inferenz-Techniken helfen bei der Berechnung der
A-Posteriori-Wahrscheinlichkeiten in generativen Modellen und ermöglichen so neue
Ansätze des modellbasierten machinellen Lernens im Bereich des maschinellen Sehens.
In diskriminativen Modellen wie CNNs helfen die vorgeschlagenen verallgemeinerten
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Zusammenfassung

Filter beim Entwurf neuer Netzarchitekturen, die sowohl hochdimensionale Daten verar-
beiten können als auch Vorkenntnisse in die Inferenz einbeziehen.
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Symbols and Notation
Unless otherwise mentioned, we use the following notation and symbols in this thesis.
Here, we only list those symbols which are used across multiple chapters. Those symbols
that are specific to particular sections or chapters are not listed here.

Symbol Description

x Observation variables (in vectorized form)
y Target variables (in vectorized form)
ȳ Intermediate/Proposed target variables
Kt ,mt , · · · Random variables at time step t
θ Set of all model parameters
α,β ,µ,γ Model or training parameters
f Pixel or superpixel features such as (x,y,r,g,b)
P(·|·) Probability distribution or density
N (·|·) Gaussian distribution
ψu Unary potential at each pixel/superpixel
ψp Pairwise potential between two pixels/superpixels
L(·),E(·) Loss/Objective/Energy function
F(·) Generic function relating input to output variables
Λ Diagonal matrix for scaling image features say (x,y,r,g,b)
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Chapter 1

Introduction

Computer vision is the task of inferring properties of the world from the observed visual
data. The observed visual data can originate from a variety of sensors such as color or
depth cameras, laser scans etc. The properties of the world range from low-level material
properties such as reflectance to high-level object properties such as 3D shape and pose.
The field of computer vision encompasses a broad range of problems involving a variety
of sensor data and world properties. Some example problems include: ‘Inferring 3D pose
and shape of an object from a depth image’; ‘Inferring the actions of the persons from
video’ etc. Computer vision is hard because of variability in lighting, shape and texture
in the scene. Moreover, there is sensor noise and the image signal is non-additive due to
occlusion. Vision problems are inherently ambiguous as the sensor data is an incomplete
representation of the richer 3D world. As a result, probabilistic frameworks are typically
employed to deal with such ambiguity.

Following [204], there are three main components in any vision system: model, learn-
ing algorithm and inference algorithm. The Model forms the core of any vision system
describing the mathematical relationship between the observed data and the desirable
properties of the world. The set of parameters and/or structure of this mathematical
model is learned using a learning algorithm. Once the model is learned, an inference
algorithm is used to predict the world properties from a given observation.

Since models form the core of any vision system, let us briefly discuss the two broad
categories in computer vision models: Generative and Discriminative models, which
can be viewed as complementary and inverse to each other. Let us denote the observed
data as a vector of random variables x ∈ Rk and the target world properties as another
vector of random variables y ∈ Rl . For example, x can be a vectorized representation
of image pixels and y can be a vector representing the parameterized shape of an object
in the image. Generative models characterize the probability of observed data given the
world properties P(x|y,θ) (called ‘likelihood’) as well as a prior on target variables P(y),
where θ denotes the parameters of the model. Some example generative models include
graphics systems and probabilistic graphical models. In this thesis, we use the term
‘generative’ more loosely in the sense that any model which characterizes the likelihood
P(x|y,θ) and/or prior over target variables P(y) is considered a ‘generative’ model. Dis-
criminative models characterize the probability of world properties given the observed

1



Chapter 1 Introduction

data P(y|x,θ) (called ‘posterior distribution’). In other words, generative models model
the image formation process as a function of world parameters, whereas discriminative
approaches model the target world parameters as a function of the given image. Once the
model is defined, a learning algorithm is used to learn the model parameters θ and then
an inference algorithm is used to predict the posterior distribution P(y|x,θ). In Chap-
ter 2, we will discuss more about these models along with the inference and learning in
them.

Depending on the type of model, a specialized learning or inference algorithm may
not be required. For example, in the case of manually specified generative models (e.g.
graphics system or fully specified Bayesian network), there is no need for a specialized
learning algorithm since all the model parameters are already hand specified, but special-
ized inference techniques are required to invert such models. In the case of discriminative
models, where the posterior distribution P(y|x,θ) is directly modeled, (e.g. neural net-
works or random forests), the inference mechanism just reduces to a simple evaluation
of the model.

This dissertation focuses on improving the inference in prominent computer vision
models. Inference plays a crucial role in any vision system as this would produce the
desired end result for a given observation. The breakthroughs in computer vision tech-
nology are often marked by the advances in the inference techniques as even the model
design is often dictated by the complexity of the inference in them. The inference result
is what matters at the end and having a model with high fidelity but with no feasible
or practical inference scheme (for instance recent photo-realistic graphics systems) is
of little use for addressing vision problems. Thus, better inference techniques not only
improve the existing computer vision systems but also help to develop better models.
This thesis work proposes techniques for better inference in existing and widely used
computer vision models.

1.1 Thesis Overview

In this section, we will discuss the objective of this thesis followed by the organization
and contributions of various chapters.

1.1.1 Objective

The main aim of the work presented in this thesis is to improve the performance of
inference algorithms used in different computer vision models. Inference is highly inter-
linked with model design and depending on the type of model, we propose different
techniques to improve inference.

Generative models characterize the image formation process and the inference is typi-
cally performed via Bayesian inference techniques. Despite their intuitive appeal, the use

2



1.1 Thesis Overview

of generative models in vision is hampered by the difficulty of posterior inference (esti-
mating P(y|x,θ)). Existing inference techniques are either often too complex or too slow
to be practical. In this thesis, we aim to alleviate some of these inference challenges in
generative models. Specifically, we concentrate on improving two different inference
schemes for generative vision models: First one is Markov chain Monte Carlo (MCMC)
inference for inverting graphics engines and the second one is message passing inference
in layered graphical models. A common strategy that we follow to improce inference in
generative models is to learn a new discriminative model that is separate from the given
generative model and propose modified inference schemes that make use of this new
discriminative model for better inference.

Discriminative models directly model the posterior distribution P(y|x,θ) of the de-
sired world parameters given the observed data. Thus the inference amounts to simple
evaluation of the model. One of the main limitations of inference in discriminative mod-
els in the lack of principled techniques to incorporate our prior knowledge about the task.
This is especially the case with the prominent convolutional neural network (CNN) mod-
els. In this thesis, we concentrate on CNN models and propose techniques to improve
inference in them. We modify the original CNN models and make them more amenable
for the incorporation of prior knowledge.

In summary, the aim of this thesis is to improve inference in general computer vision
models. We do this by leveraging machine learning techniques to learn a new model for
inference that is either separate from the original model (in case of generative models) or
modifying the original model itself (in case of discriminative models). The work in this
thesis deals with the construction and learning of such inference models and how such
models can be integrated into the original vision models for better inference. We propose
techniques for inference in diverse computer vision models ranging from hand-specified
graphics systems to freely-parameterized neural network models. We concentrate on
three types of models which are prevalent in modern computer vision systems: 1. Graph-
ics systems; 2. Layered graphical models and 3. Convolutional neural networks.

1.1.2 Organization and Contributions

Since models form the core part of any vision system and this thesis involves the con-
struction of new models for inference, in Chapter 2, we give an overview of different
computer vision models along with the learning and inference mechanisms that are
usually employed in them. In addition, we review some existing techniques that aim
to improve inference in vision models by combining generative and discriminative ap-
proaches.

Part I: Inference in Generative Vision Models In Part I (Chapters 3 and 4) of the
thesis, we propose techniques for inference in generative computer vision models.
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Chapter 1 Introduction

Chapter 3 - The Informed Sampler In this Chapter, we propose a new sampling
technique for inference in complex generative models like graphics systems. Markov
chain Monte Carlo (MCMC) sampling is one of the most widely used and most generic
inference scheme in such complex generative models. Although generic, in practice,
MCMC sampling suffers from slow convergence unless the posterior is a unimodal low-
dimensional distribution. By leveraging discriminative learning techniques with ancil-
lary clustering and random forest models, we devise a mixture sampling technique that
helps in faster mixing without losing the acceptance rate. We call this ‘Informed Sam-
pler’ and demonstrate it using challenging generative graphics models and a popular
model of human bodies [117]. Our method is similar in spirit to Data Driven Markov
Chain Monte Carlo methods [281].

Chapter 4 - Consensus Message Passing In this Chapter, we concentrate on layered
and loopy graphical models that are prevalent in computer vision applications. When fac-
tors (relationship between the variables) in such graphical models are from a pre-defined
family of distributions, inference is generally performed using standard message pass-
ing techniques such as ‘expectation propagation’ [184] and ‘variational message pass-
ing’ [267]. We observe that these inference techniques fail to converge or even diverge
when the graphical model is loopy with a large number of variables. The failure of these
inference techniques can be attributed to the algorithm’s inability to determine the values
of a relatively small number of influential variables which we call global variables (e.g.
light in a scene). Without accurate estimation of these global variables, it can be very
difficult for message passing to make meaningful progress on the other variables in the
model. As a remedy, we exploit the layered structure of the model and learn ancillary
random forest models that learn to predict these influential variables and use them for
better message passing inference. We call this method ‘Consensus Message Passing’
(CMP) and demonstrate it on a variety of layered vision models. Experiments show that
CMP leads to significantly more accurate inference results whilst preserving the compu-
tational efficiency of standard message passing.

Part II: Inference in Discriminative Vision Models In Part II (Chapters 5, 6 and 7)
of the thesis, we focus on inference in discriminative CNN models.

Chapter 5 - Learning Sparse High Dimensional Filters 2D spatial convolutions
form the basic unit of CNN models. Spatial convolutions are perhaps the simplest,
fastest and most used way of propagating information across pixels. Despite their stag-
gering success in a wide range of vision tasks, spatial convolutions have several draw-
backs: There are no well-established ways of incorporating prior knowledge into spa-
tial filters; Spatial convolutions quickly get intractable when filtering data of increasing
dimensionality; and the receptive fields of the filters are image-agnostic. Spatial con-
volutions are usually confined to a local neighborhood of pixels and thus many deep
layers of spatial convolutions or post-processing conditional random field (CRF) formu-
lations are required for long-range propagation of information across pixels. Bilateral
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filtering [15, 251], on the other hand, provides a simple yet powerful framework for long
range information propagation across pixels. But the traditional use of bilateral filtering
is confined to a manually chosen parametric from, usually a Gaussian filter. In this chap-
ter, we generalize the bilateral filter parameterization using a sparse high-dimensional
linear approximation and derive a gradient descent algorithm, so the filter parameters
can be learned from data. We demonstrate the use of learned bilateral filters in several
diverse applications where Gaussian bilateral filters are traditionally employed: color
up-sampling, depth up-sampling [148] and 3D mesh denoising [82]. The ability to learn
generic high-dimensional sparse filters allows us to stack several parallel and sequen-
tial filters like in convolutional neural networks (CNN) resulting in a generalization of
2D CNNs which we call ‘Bilateral Neural Networks’ (BNN). We demonstrate the use
of BNNs using an illustrative segmentation problem and sparse character recognition.
Gaussian bilateral filters are also employed for mean-field inference in fully connected
conditional random fields (DenseCRF) [151]. Existing works on DenseCRFs are con-
fined to using Gaussian pairwise potentials due to the traditional use of Gaussian ker-
nels in bilateral filtering. By learning bilateral filters, we remove the need of confining
to Gaussian pairwise potentials which has the added advantage of directly learning the
pairwise potentials for a given task. We showcase the use of learning edge potentials in
DenseCRF with experiments on semantic segmentation and material segmentation. In
summary, we propose a general technique for learning sparse high-dimensional filters
that help in improving the model and inference in DenseCRF models and also general-
izes 2D CNNs.

Chapter 6 - Video Propagation Networks Videos carry redundant information across
frames and the information propagation across video frames is valuable for many com-
puter vision applications such as video segmentation, color propagation etc. In this chap-
ter, we propose a novel neural network architecture for video information propagation.
We leverage learnable bilateral filters, developed in the previous chapter, and propose a
‘Video Propagation Network’ (VPN) that processes video frames in an adaptive manner.
The model is applied online: it propagates information forward without the need to ac-
cess future frames other than the current ones. In particular we combine two components,
a temporal bilateral network for dense and video adaptive filtering, followed by a spatial
network to refine features and increased flexibility. We present experiments on video
object segmentation and semantic video segmentation and show increased performance
comparing to the best previous task-specific methods, while having favorable runtime.
Additionally we demonstrate our approach on an example regression task of propagating
color in a grayscale video.

Chapter 7 - Bilateral Inception Networks In this Chapter, we propose a new CNN
module which we call the ‘Bilateral Inception’ (BI) module that can be inserted into exist-
ing segmentation CNN models. BI modules help in image adaptive long-range informa-
tion propagation across intermediate CNN units at multiple scales. We show empirically
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that this alleviates some of the need for standard post-processing inference techniques
such as DenseCRF. In addition, our module helps in recovering the full resolution of
segmentation result, which is generally lost due to max-pooling and striding. Experi-
ments on different base segmentation networks and datasets showed that our BI modules
result in reliable performance gains in terms of both speed and accuracy in comparison
to traditionally employed DenseCRF/Deconvolution techniques and also recently intro-
duced dense pixel prediction techniques.

1.2 List of Publications
The contributions in this thesis mainly comprise of work from the following publications
[135, 131, 143, 134, 88, 133]:

• V. Jampani, S. Nowozin, M. Loper, and P. V. Gehler. The informed sampler: A dis-
criminative approach to bayesian inference in generative computer vision models.
CVIU, 2015. [135]

• V. Jampani, S. M. A. Eslami, D. Tarlow, P. Kohli, and J. Winn. Consensus message
passing for layered graphical models. In AISTATS, 2015. [131]

• M. Kiefel, V. Jampani, and P. V. Gehler. Permutohedral lattice CNNs. In ICLR
Workshops, 2015. [143]

• V. Jampani, M. Kiefel, and P. V. Gehler. Learning sparse high dimensional filters:
Image filtering, dense CRFs and bilateral neural networks. In CVPR, 2016. [134]

• R. Gadde, V. Jampani, M. Kiefel, D. Kappler, and P. Gehler. Superpixel convolu-
tional networks using bilateral inceptions. In ECCV, 2016. [88]

• V. Jampani, R. Gadde, and P. V. Gehler. Video propagation networks. In CVPR,
2017. [133]

The following publications [132, 132, 89] are a part of my PhD research but are outside
the scope of this thesis:

• V. Jampani, R. Gadde, and P. V. Gehler. Efficient facade segmentation using auto-
context. In WACV, 2015. [132]

• L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical flow with semantic
segmentation and localized layers. In CVPR, 2016. [221]

• R. Gadde, V. Jampani, R. Marlet, and P. V. Gehler. Efficient 2D and 3D facade
segmentation using auto-context. PAMI, 2017. [89]
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Chapter 2

Models and Inference in Computer
Vision
Models play a central role in the study of both biological and artificial vision. Helmholtz,
in the 19th century, popularized the human vision as a result of psychological inference
in learned models [85, 46] as opposed to native processing in lower visual system or
eyes. With the advent of computers in the 20th century, researchers are able to formulate,
learn and evaluate several computational models of vision. More recently, with powerful
parallel computing hardware like graphics processing units (GPU), researchers are able
to learn and do inference in highly complex models with even millions of parameters.
In this chapter, we present an overview of different computer vision models and discuss
the inference and learning techniques therein. Since this thesis work mainly constitutes
the development of new inference techniques, we emphasize the difficulty of inference
in different models and discuss several remedies proposed in the literature.

2.1 Models in Computer Vision
Models describe the mathematical relationship between the observed data and the desired
properties of the world. Computer vision models are often probabilistic in nature due
to the inherent ambiguity in vision problems. Due to the broad range of problems in
computer vision, there is no single model that can work well for various vision tasks.
Depending on the nature of problem and the availability of data, different models work
well for different scenarios. Visual data is complex with variability arising due world
properties such as occlusion, lighting, texture, geometry, depth ordering etc. It is very
difficult to model the relationship between all the aspects of the world and the visual
data, and do inference therein. Vision models usually are highly specific to one or few
aspects of the world.

As briefly mentioned in Chapter 1, computer vision models can be broadly classified
into two types: Generative and Discriminative models, which can be viewed as com-
plementary and inverse to each other. Generative models characterize the probability
of observed data given the world properties P(x|y,θ) and discriminative models char-
acterize the probability of world properties given the observed data P(y|x,θ), where θ
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denotes the parameters of the model. In other words, generative models model the image
formation process as a function of world parameters, whereas discriminative approaches
model the desired world parameters as a function of the given image. As mentioned
in Chapter 1, we use the term ‘generative’ more loosely in the sense that any model
which characterizes the likelihood P(x|y,θ) and/or prior over target variables P(y) is
considered a ‘generative’ model. Next, we give an overview of these two complemen-
tary models discussing the advantages and disadvantages of both.

(a) Graphics Renderings

xi

zi

×

si

Gaussian

ri

Product

ni

l
Inner

(b) A face generative model

Normal {ni}

Shading {si}

Reflectance {ri}

Observed image {xi}
(c) Example face data

Figure 2.1: Sample generative models in computer vision. (a) Sample renderings from
modern graphics engines [2, 4]. Modern graphics provide renderings with stunning level
of realism and vision problems can be approached as inverting such graphics systems.
Images courtesy from the official websites of CryEngine [2] and Lumberyard [4]. (b) A
layered graphical model (factor graph) for faces (explained in Sec. 2.2.2). Here the vision
problem could be inferring the reflectance map, normal map and light direction from a
given face image. (c) Sample face data from Yale B face dataset [94, 161].
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2.2 Generative Vision Models

2.2 Generative Vision Models

A conceptually elegant view on computer vision is to consider a generative model of
the physical image formation process. The observed image becomes a function of un-
observed variables of interest (for instance the presence and positions of objects) and
nuisance variables (for instance light sources and shadows). When building such a gen-
erative model, we can think of a scene description y that produces an image x = G(y,θ)
using a deterministic rendering engine G with parameters θ , or more generally, results in
a distribution over images, P(x|y,θ). Generative models provide a powerful framework
for probabilistic reasoning and are applicable across a wide variety of domains, including
computational biology, natural language processing, and computer vision. For example,
in computer vision, one can use graphical models to express the process by which a face
is lit and rendered into an image, incorporating knowledge of surface normals, lighting
and even the approximate symmetry of human faces. Models that make effective use
of this information will generalize well, and they will require less labelled training data
than their discriminative counterparts (e.g. random forests or neural networks) in order
to make accurate predictions.

Given an image observation x and a prior over scenes P(y) we can then perform
Bayesian inference to obtain the posterior distribution over the target variables P(y|x,θ)
(also called ‘posterior inference’):

P(y|x,θ) = P(x|y,θ)P(y)
P(x)

=
P(x|y,θ)P(y)

∑y′ P(x|y′,θ)P(y′)
. (2.1)

The summation in the denominator runs over all the possible values of y variable and
would become integral in the case of continuous variables. P(x|y,θ) is the likelihood of
the observed data. Inspecting the above Bayesian formula shows that it is straight for-
ward to compute the numerator as that involves simply evaluating the generative model.
The key difficulty with Bayesian inference is computing the denominator in Eq. (2.1).
Often, it is not feasible to evaluate the summation over all the possible target variables
even for slightly non-trivial models. This makes it difficult to obtain closed-form solu-
tions for posterior inference resulting in the development and use of several approximate
inference techniques such as Markov Chain Monte Carlo (MCMC) sampling and varia-
tional inference, which we will briefly discuss later.

There are different types of generative models with varying model fidelity and com-
plexity of inference therein. In general, generative models which accurately model the
image formation process (e.g. graphics engines) have complex non-linear functions re-
sulting in a challenging inference task. Building a good generative model for a given
task involves finding a good trade-off between model fidelity and inference complexity.

Figure 2.1 shows some sample generative models in computer vision. Advances in
graphics and physics of light transport resulted in generative models with high fidelity
as is evident in modern computer games and animation movies. But it is difficult to
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Figure 2.2: An example ‘inverse graphics’ problem. A graphics engine renders a 3D
body mesh and a depth image using an artificial camera. By Inverse Graphics we refer to
the process of estimating the posterior probability over possible bodies given the depth
image.

invert such complex models. Probabilistic graphical models provide the widely adopted
framework for generative computer vision models. Although graphical models have less
fidelity and only model one or two aspects of the world properties, they are generally
preferred over graphic systems as inference in them is faster and more reliable. Next,
we will discuss these two prominent generative vision models: Inverse graphics and
Probabilistic graphical models.

2.2.1 Inverse Graphics

Modern graphics engines (e.g., game engines like CryEngine [2] and Lumberyard [4])
leverage dedicated hardware setups and provide real-time renderings with stunning level
of realism. Some sample renderings from modern game engines [2, 4] are shown in
Fig. 2.1(a). Vision problems can be tackled with posterior inference (Eq. (2.1)) in such
accurate computer graphics systems. This approach for solving vision problems can be
understood as Inverse Graphics [22]. The target variables y correspond to the input to
the graphics system and the observation variables are the output x = G(y,θ). The de-
terministic graphics system G can be converted into a probabilistic generative model by
defining a prior over the target variables (input to the graphics system) P(y) and also
defining an approximate likelihood function P(x|G(y,θ)) characterizing the model im-
perfections. If the model imperfections are neglected, the likelihood can be given using
the delta function P(x|y) = δ (x−G(y,θ)). An example ‘inverse graphics’ problem,
which we tackle in the next chapter, is depicted in Fig. 2.2, where the graphics engine
renders a depth image given 3D body mesh and camera parameters, and a vision problem
would be the inverse estimation of body shape given a depth image.

Modern graphic engines are based on physics principles and thus most of the rendering
parameters θ are set to mimic the real world physics. Learning in graphics generative
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models mainly involves learning the prior P(y) over the target world properties which
are input to the graphics system. Depending on the type of model, several learned priors
are proposed in the literature. An example is the SCAPE model [11, 117] for modeling
the prior over human body shape and pose for the example shown in Fig. 2.2.

Since modern rendering engines involve complex non-linear functions, it is usually not
feasible to obtain a closed-form solution for the posterior distribution (Eq. (2.1)). Even
several approximate inference techniques like variational optimization techniques [147]
cannot be easily employed for posterior inference in complex graphics systems. ‘Monte
Carlo’ sampling provides a generic inference technique for such complex models and
can be used even when the internals of the graphics systems are not known. The aim
of sampling methods is to characterize the posterior distribution with independent and
identically distributed samples. There exists many Monte Carlo sampling strategies such
as uniform sampling, rejection sampling, importance sampling [107, 216] etc. Here, we
limit our discussion to the widely used Markov Chain Monte Carlo (MCMC) sampling
techniques.

MCMC Sampling

MCMC sampling [181] is a particular instance of sampling methods that generates a
sequence of target variables (samples) by simulating a reversible Markov chain.

y1→ y2→ y3→ ··· → yn (2.2)

This Markov chain of samples approximates the target distribution (posterior distribu-
tion in the case of ‘inverse graphics’). The Markov property states that at every sequence
step t, given the present sample yt in the sequence, the next sample yt+1 is independent
of all the previous samples P(yt+1|yt , . . . ,y1) = P(yt+1|yt).

Let us denote the target distribution with π(·). In the inverse graphics setting, the target
distribution is the posterior π(y)=P(y|x,θ). And, let us denote the transition probability
between the two states (samples) in the Markov chain be T (yt+1|yt) or T (yt → yt+1) ∈
[0,1]. One way to ensure that the Markov chain is reversible and converging to the target
distribution is to check whether the following detailed balance condition holds for any
two states yt and ȳ [147]:

π(yt)T (yt → ȳ) = π(ȳ)T (ȳ→ yt) (2.3)

Note that the above detailed balance condition is satisfied when the transition proba-
bility distribution is close to the target distribution. Since we do not know the target dis-
tribution, designing transition probability distributions that satisfies the detailed balance
condition is difficult. The Metropolis-Hastings (MH) algorithm [181], instead of devis-
ing special transition probabilities, introduces the acceptance probability to each Markov
chain transition A(yt → ȳ) ∈ [0,1]. The detailed balance condition then becomes:
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π(yt)T (yt → ȳ)A(yt → ȳ) = π(ȳ)T (ȳ→ yt)A(ȳ→ yt) (2.4)

It can be verified [147] that the following acceptance probability satisfies the above
detailed balance condition:

A(yt → ȳ) = min
(

1,
π(ȳ)T (ȳ→ yt)

π(yt)T (yt → ȳ)

)
(2.5)

With the use of the above acceptance rule, instead of designing task-specific transition
probability distributions, any transition probability distribution T with non-zero proba-
bility over the range of all target variables can be used for MH sampling. T is also called
‘proposal distribution’ since it is used to propose the next sample in the Markov chain,
which is then either accepted or rejected based on the acceptance probability. Below, we
summarize the Metropolis-Hastings (MH) MCMC algorithm.

Metropolis-Hastings (MH) MCMC: Sampling from π(·) consists of repeating the
following two steps [174]:

1. Propose a transition using a proposal distribution T and the current state yt

ȳ∼ T (·|yt)

2. Accept or reject the transition based on Metropolis Hastings (MH) acceptance rule:

yt+1 =

{
ȳ, rand(0,1)< min

(
1, π(ȳ)T (ȳ→yt)

π(yt)T (yt→ȳ)

)
,

yt , otherwise.

Different MCMC techniques mainly differ in the type of the proposal distribution
T . Note that we do not need to compute the target (posterior) probabilities, but only
the ratio of posterior probabilities π(ȳ)

π(yt)
. This makes MCMC sampling suitable for the

inverse graphics setting where it is not feasible to get a closed-form solution for the
normalization constant in the posterior distribution (denominator in Eq. (2.1)).

The key aspect of the MH sampling is the number of steps it requires until it con-
verges to the target distribution. If the proposal distribution is very different from the
target distribution, the samples tend to be frequently rejected resulting in a long wait for
convergence. In practice, it is difficult to measure the convergence of any sampler since
we do not know the target distribution. In Chapter 3, we discuss several diagnostic mea-
sures that indicate the convergence of MCMC sampling. In the case of ‘inverse graphics’,
each forward rendering step takes a considerable amount of time and we would like the
sampler to accept as many samples as possible. A key for improving the MH sampling
efficiency is to design the proposal distributions that match the target posterior distri-
bution. In Chapter 3, we devise such technique by leveraging discriminative learning
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Figure 2.3: An example factor graph. Variable nodes (circles) and fac-
tor nodes (squares) representing the factorized function P(a,b,c,d,e, f ) =
ψi(a)ψ j(a,b)ψk(b,d)ψl(b,c,e, f )ψm( f )ψn(c,e, f ). Also shown are sample variable-to-
factor messages (green arrows) and, factor-to-variable messages (red arrows).

techniques for learning the proposal distribution. Refer to [174, 147] for more details on
MCMC sampling. In Chapter 3, we study the behavior of MCMC sampling and its vari-
ants for inverting graphics engines and propose techniques for improving the sampling
efficiency.

2.2.2 Probabilistic Graphical Models

Probabilistic graphical models (PGM) provide a rigorous mathematical framework, based
on probability and graph theory, for modeling the relationship between the world and im-
age properties. PGMs have been popular not only in computer vision but also in related
fields such as natural language processing, speech processing, etc. Several model repre-
sentations, learning and inference schemes haven been developed in the PGM literature
and even a concise description of them would be an inundating task and is outside the
scope of this thesis. Refer to [147] for a comprehensive overview of PGMs. PGMs
generally represent input-output relationships with factorized functions and are typically
confined to a restricted domain so that efficient inference techniques can be applied.

PGMs are popular models of choice when the joint distribution of all the target and
observation variables can be factorized into independent distributions each involving a
subset of variables. This factorization of the joint distribution is represented with the
structure of the graph, where each node represents a subset of variables and edges be-
tween the nodes represent the joint or conditional distributions between the correspond-
ing node variables.

Factor Graph Representation

Factor graphs provide a useful visualization and mathematical formalization for repre-
senting probabilistic graphical models. Factor graphs are bipartite graphs where nodes
in the graph are divided into two types: ‘variable’ nodes represented as circles and ‘fac-
tor’ nodes represented as squares. Variable nodes represent the random variables in the
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graphical model and factor nodes represent the statistical relationship between the vari-
able nodes that they are connected to. Every edge in the factor graph connects a variable
node to factor node. That is, there are no direct edges among the variable nodes or fac-
tor nodes. An example factor graph is shown in Fig. 2.3, where we represent variable
nodes as a,b,c, · · · and factor nodes as i, j,k, · · · . The factor function associated with a
factor node a is represented as fa and the states of variables associated with a variable
node i is represented as i. The joint function in Fig. 2.3, P(a,b,c,d,e) is factorized into
five independent factors ψi(a)ψ j(a,b)ψk(b,d)ψl(b,c,e, f )ψm( f ) fn(c,e, f ). Each factor
in the graph represent a function and the product of all factor functions makes up the
joint function. In the context of probabilistic generative models, these functions are
probability distributions. The edges in the factor can be either directed or un-directed
representing the joint and conditional distributions respectively. In the case of discrete
variables, the factor functions are probability tables assigning the probabilities for all the
states of the factor variables. And, in the case of continuous variables, the factor func-
tions are probability density functions. Another example of factor graph, representing a
generative model of faces, is shown in Fig. 2.1(b). We will discuss more about this face
model later in this section.

Graphical representations like factor graphs have several advantages. They provide an
intuitive way of representing the statistical dependencies between the variables. Given
the factor graph, it is easy to visualize conditional independence between variables. For
a factor graph with undirected edges, variables s and t are independent given a set of
variables ν (s⊥⊥ t|ν) if every path between s and t have some node v ∈ ν . For instance,
in the factor graph shown in Fig. 2.3, variable d is independent of a,c,e and f given
b is observed: d ⊥⊥ a,c,e, f |b. Perhaps the most important advantage of graphical rep-
resentations like factor graphs is that we can perform Bayesian inference by using the
graph structure. For example, the widely used message-passing inference is performed
by passing messages between factor and variable nodes.

Message Passing

Message Passing (MP) inference forms a general class of algorithms that are used to es-
timate the factor graph distributions, i.e. maximizing or minimizing the joint distribution
(P(a,b,c,d,e,f) in Fig. 2.3). MP inference proceeds by passing messages (distributions
or density functions) between variable and factor nodes. Here, we describe the message
passing in the famous ‘Sum-Product’ belief-propagation (BP) algorithm. Messages are
probability distributions that represent the beliefs over the variables to/from which the
messages are being sent. MP inference in factor graphs has two types of messages: Mes-
sages from variable to factor nodes µa→i (green arrows in Fig. 2.3) and messages from
factor to variable nodes µi→a (red arrows in Fig. 2.3). In the case of Sum-Product BP,
these messages are defined as follows.

Variable-to-Factor Message: A message from variable to factor node is the product of
all the messages that the variable node receives from its neighboring factor nodes except
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the recipient factor node. In Fig. 2.3, the message µb→m from variable b to factor m is
the product of the messages that b receives, i.e. µk→bµl→b. In general, a message from a
variable node g to factor node r is defined as:

µg→r(xg) = ∏
r̂∈N(g)\{r}

µr̂→g(xg), (2.6)

where N(g) is the set of neighboring nodes to g and xg represent the states of g.

Factor-to-Variable Message: A message from factor to variable node is first computed
as the product of factor function with all the incoming messages from variables except
the target variable. The resulting product is then marginalized over all the variables
except the one associated with the target node variables. For example, in Fig. 2.3, the
message from l to b is computed by marginalizing the product ψl(b,c,e, f )µc,e→lµ f→l
over non-target variables c,e, f . In general, a message from factor node r to variable
node g is defined as:

µr→g(xg) = ∑
x′:Vr\g

ψr(x′) ∏
ĝ∈N(r)\{g}

µĝ→r(xĝ), (2.7)

where N(r) represents the neighboring nodes of r and Vr represent all the variables
attached to r. The summation in the above equation becomes an integral when dealing
with continuous variables.

In a typical message passing inference run, the above messages are repeatedly com-
puted and sent between factor and variable nodes. Depending on the structure of the
factor graph, different message priorities are used. Upon convergence or passing mes-
sages for a pre-defined number of iterations, the marginal distribution at each variable
node is computed as the product of all its incoming messages from the neighboring factor
nodes:

P(xg) = ∏
r̂∈N(g)

µr̂→g(xg). (2.8)

Messages represent a probability of each possible state of a variable. In the case of
discrete variables with small number of states, it is easy to represent messages as prob-
ability distribution tables. However, in the case of continuous variables, the messages
must be full functions of the variables. Some approximations are typically required to
represent messages with continuous distributions. Different message passing algorithms
differ in the way the messages are approximated. Some MP algorithms assume Gaus-
sian form for the messages with either restricting the type of factor functions [266] that
always result in Gaussian messages or projecting the computed messages into Gaussian
form [184]. Some other MP algorithms use mixture of Gaussians [238] or set of parti-
cles/samples [125] for representing messages.
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Variational Inference

Except for small graphical models, exact Bayesian inference (say, with the above men-
tioned Sum-Product BP) in PGMs is usually not possible. This is especially true for
computer vision models which typically involve several hundreds or thousands of vari-
ables. Variational Bayesian inference is one of the widely used technique for performing
inference in PGMs. These methods try to find an approximation Q(y) to the true posterior
distribution P(y|x) via optimization techniques. This approximate distribution is usually
taken from a known simpler family of distributions (such as exponential family) and the
optimization is performed over the space of that family of distributions. For example, for
the above joint distribution function P(a,b,c,d,e, f ), an approximation could be a fac-
torized distribution Q = Q1(a)Q2(b)Q3(c)Q4(d)Q5(e)Q6( f ), each from an exponential
family of distributions. The most commonly used optimization function is minimizing
the Kullback-Leibler (KL) divergence of P from Q in order to find a close approximation
to P:

DKL(Q||P) = ∑
z

Q(y)
Q(y)

P(y,x)
︸ ︷︷ ︸

−L(Q)

+ logP(x) (2.9)

Minimizing the above KL-divergence translates to maximizing the variational lower
bound L(Q) as P(x) is constant. L(Q) is also called energy functional or variational free
energy as it can be written as the sum of energy EQ[logP(y,x)] and the entropy of Q. Q
is chosen in such a way that L(Q) becomes tractable and maximizable.

In general, the energy functional is maximized by passing messages between differ-
ent variable nodes in the factor graph (e.g. factor graphs in Figs. 2.3, 2.1(b)). Fol-
lowing [147], depending on the type of approximations to Q and the energy functional,
methods for maximizing L(Q) can be categorized into three types. The first category
of methods optimizes approximate versions of the energy functions by passing mes-
sages in the simplified versions of the given factor graph. This includes the loopy belief
propagation [86, 265] algorithm. The second category of methods try to maximize the
exact energy functional but uses approximate message propagation steps, for example
approximating complex messages with distributions from the exponential family. This
is equivalent to using relaxed consistency constraints on Q. These class of methods are
also known as expectation propagation (EP) [184] algorithms. The third commonly used
category of methods maximize the exact energy functional but restrict Q to simple factor-
ized distributions, which is called mean-field approximation. One of the most commonly
used message passing technique for optimizing the energy functional is variational mes-
sage passing (VMP) [267]. In Chapter 4, we show how EP and VMP fail to converge for
inference in model shown in Fig. 2.1(b) and propose a remedy for that.

Several other inference techniques such as MCMC sampling can be used for inference
in PGMs. Refer to [83] for a tutorial on variational Bayesian inference and to [147, 261]
for a comprehensive review of various inference techniques in PGMs.
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2.2 Generative Vision Models

Two Example Models

Here, we give a brief overview of two popular types of PGMs in vision which are later
used in this thesis: Layered graphical models and fully connected CRFs.

Layered Graphical Models: Several vision models are hierarchical in nature and can
be naturally expressed with layered graphical models. Figure 2.1(b) shows an example
layered factor graph model for faces. Here, a vision task could be: Given an observation
of pixels x = {xi}, we wish to infer the reflectance value ri and normal vector ni for
each pixel i (see Fig. 2.1(c)). The model shown in Fig. 2.1(b) represents the following
approximate image formation process: xi = (ni · l)×ri+ε , thereby assuming Lambertian
reflection and an infinitely distant directional light source with variable intensity. Each
factor in the graph is a conditional probability distribution providing the factorization for
the joint distribution:

P(x,z,r,s,n, l) = P(n)P(l)P(r)∏
i

P(xi)P(xi|zi)P(zi|ri,si)P(si|ni, l), (2.10)

where si and zi represent the intermediate shading and non-noisy image observation
variables. We omitted the model parameters θ in the above equation for the sake of
simplicity. A vision task could to estimate the posterior distribution P(r,s,n, l|x). Note
that this generative model is only a crude approximation of the true image formation
process (e.g. each pixel is modeled independently and it does not account for shadows or
specularities). Such approximations are customary to PGMs as several PGM inference
techniques cannot be applied for models with complex non-linear factors. Note that even
for a relatively small image of size 96× 84, the face model contains over 48,000 latent
variables and 56,000 factors, and as we will show in Chapter 4, standard message passing
routinely fails to converge to accurate solutions.

Fully Connected CRFs: Fully connected conditional random fields, also known as
DenseCRFs, are CRF models where every variable in the image is connected to every
other variable via pairwise edge potentials. For illustration purposes, let us consider the
task of semantic segmentation which is labelling each pixel in a given image with a se-
mantic class. See Fig. 2.4 for an illustration. For the segmentation problem, DenseCRFs
are generally used to encode the prior knowledge about the problem: ‘Pixels that are
spatially and photometrically similar are more likely to have the same label’.

For an image x with n pixels, the semantic segmentation task is to produce a labelling y
with discrete values {y1, . . . ,yn} in the label space yi ∈ {1, . . . ,L}. The DenseCRF model
has unary potentials ψu(y) ∈ R, e.g., these can be the output of CNNs. The pairwise
potentials, as introduced in [151], are of the form ψ

i j
p (yi,y j) = µ(yi,y j)k(fi, f j) where µ

is a label compatibility matrix, k is a Gaussian kernel k(fi, f j) = exp(−(fi− f j)
>Σ−1(fi−
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Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign
Vegetation Terrain Sky Person Rider Car Truck

Bus Train Motorcycle Bicycle

(a) Sample Image (b) Ground Truth Semantics

Figure 2.4: Illustration of semantic segmentation task. A sample image from
Cityscapes street scene dataset [57] and the corresponding ground truth semantic labels.

f j)) and the vectors fi are feature vectors at each point. Commonly used features are
position and color values at the pixels (e.g., f = (x,y,r,g,b)>). In the DenseCRF model,
the energy functional for an image x thus reads:

P(y|x) ∝ exp(−∑
i

ψu(yi)−∑
i> j

ψ
i j
p (yi,y j)). (2.11)

Because of the dense connectivity, exact MAP or marginal inference is intractable.
The main result of [151] is to derive the mean-field approximation for this model and to
relate it to bilateral filtering which enables tractable approximate inference. As described
above, mean-field approximation is a type of variational inference where the approximate
distribution Q is considered to be fully-factorized across pixels: Q = ∏i∈n Qi(xi). Vari-
ational inference then solves for Q by minimizing the KL divergence of P from Q(see
Eq. (2.9)).The work of [151] showed that the inference can be performed with efficient
bilateral filtering [15, 234, 251, 7] operations. Specifially, mean-field inference results in
a fixed point equation which can be solved iteratively t = 0,1, . . . to update the marginal
distributions Qi:

Qt+1
i (xi) =

1
Zi

exp(−ψu(xi)−∑
l∈L

∑
j 6=i

ψ
i j
p (xi, l)Qt

j(l)

︸ ︷︷ ︸
bilateral filtering

), (2.12)

where Zi denotes a normalization constant and can be easily computed as Qi is a single
dimensional distribution. Although we used semantic segmentation task for illustration
purposes, DenseCRFs are shown to be useful for tackling other tasks such as material
segmentation [25], optical flow estimation [239] and intrinsic image decomposition [24].

One of the fundamental limitations of the existing use of DenseCRFs is the confine-
ment of pairwise potentials ψ

i j
p (yi,y j) to be Gaussian as bilateral filtering is traditionally

implemented with a Gaussian kernel. In Chapter 5, we show how we can learn a more
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2.2 Generative Vision Models

general form of bilateral filters and apply that technique for learning pairwise edge po-
tentials in DenseCRF.

2.2.3 Advantages and Limitations
This generative modeling view is appealing as it is relatively easy to incorporate our
knowledge of physics and light transport into models and was advocated since the late
1970 [120, 104, 280, 188, 179, 274]. For example, the knowledge of how light reflects on
objects with different material properties or the knowledge of how roads and buildings
are structured are relatively easy to incorporate into generative models. Due to incorpo-
ration of strong prior knowledge into the systems, generative models usually work better
when there is little or no data available for a particular problem. Since a single genera-
tive model can model different world and image characteristics, it can be used for many
different applications. In addition, it is easier to diagnose the flaws in generative model
as most of the model is manually designed.

Despite its intuitive appeal and advantages, in practice, generative models are used
only for a few vision problems. The few successes of the idea have been in limited
settings. In the successful examples, either the generative model was restricted to few
high-level latent variables, e.g., [195], or restricted to a set of image transformations in
a fixed reference frame, e.g., [29], or it modeled only a limited aspect such as object
shape masks [74], or the generative model was merely used to generate training data for
a discriminative model [228, 90, 215, 214, 222]. With all its intuitive appeal, its beauty
and simplicity, it is fair to say that the track record of generative models in computer
vision is poor. As a result, the field of computer vision is now dominated by efficient but
data-hungry discriminative models, the use of empirical risk minimization for learning,
and energy minimization on heuristic objective functions for inference.

Why did generative models not succeed? There are two key problems that need to be
addressed, the design of an accurate generative model, and the inference therein. The
first key problem which is the design of accurate generative model is partly addressed by
recent advances in graphics. Although modern graphics provide rendering with stunning
level of realism, priors of world parameters are difficult to characterize. This results
in complex priors together with more complex forward models for accurate generative
models which in turn results in difficult inference.

This brings us to the second key problem in the generative world view which is the
difficulty of posterior inference at test time. This difficulty stems from a number of rea-
sons: first, the target variable y is typically high-dimensional and so is the posterior.
Second, given y, the image formation process realizes complex and dynamic dependency
structures, for example when objects occlude or self-occlude each other. These intrinsic
ambiguities result in multi-modal posterior distributions. Third, while most renderers are
real-time, each simulation of the forward process is expensive and prevents exhaustive
enumeration. Overall, the limitations of generative approaches out-weigh their advan-
tages making them not succeed in building practical computer vision systems.
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Despite these limitations, we still believe in the usefulness of generative models in
computer vision, but argue that we need to leverage existing discriminative or even
heuristic computer vision methods for alleviating some of the difficulties in the poste-
rior inference. Inference techniques proposed in this thesis are steps in this direction.

2.3 Discriminative Vision Models
With the advances in internet and image capturing technology, there is an explosive
growth of visual data during the last few years. Moreover, presence of crowd-sourcing
platforms like ‘Amazon Mechanical Turk’ [1] make it easier to annotate large amounts
of data by millions of people. Discriminative models directly model the contingency
of world properties on the observed data P(y|x). Unlike generative models, discrimina-
tive models are task-specific and learning takes the central role in defining the model.
Discriminative models comprise of functions directly approximating the posterior distri-
bution P(y|x,θ), where θ denote the parameters of the model. Supervised learning with
annotated training data is usually employed to fit the model parameters to the given task.
Since discriminative models directly characterize the posterior distribution, inference is
reduced to simple evaluation of the model.

Due to the availability of large amounts of training data and the computing power that
can handle rich high-capacity models, discriminative models have been very successful
in many vision problems. In addition, inference is fast since this involves a simple eval-
uation of the model. This makes discriminative models particularly attractive for many
practical applications. Many mathematical functions that are rich enough to capture the
relationship between the observation and target variables can be used as discriminative
models. Hence, many types of discriminative models have been used in the computer
vision literature.

Discriminative models are traditionally partitioned into two modules: feature extrac-
tion and prediction modules. Before the advent of modern convolutional neural networks
(CNNs), these two components are studied separately in the literature. We briefly discuss
these two components in the discriminative models.

Feature Extraction: Depending on the type of vision task, features are extracted either
at all pixels (points) in the observed data or only at some key points. For example,
registering two images taken from different view-points requires finding corresponding
points (key points) in each image and then matching. For such tasks, an additional step
of key point detection is required before feature computation. For image classification, a
single feature vector is extracted for the entire image.

An ideal feature representation should be compact, efficient to compute and invariant
to specific transformations. As an example, for semantic segmentation, features should
be invariant to intra-class variations such as illumination, scale, rotation, object articula-
tions, etc., while being sensitive to changes across different semantic categories. Several
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feature extraction schemes have been proposed in the vision literature, most of them
are hand crafted. Some popular choices include SIFT [178], HoG [23], SURF [61],
DAISY [250], etc. Models for feature extraction and prediction are plentiful and dis-
cussing all of them is outside the scope of this thesis. With the recent advances in CNNs,
feature extraction is coupled with prediction which are learned together end-to-end.

Prediction: Once the image features are extracted, the task is to estimate the posterior
distribution P(y|f(x)), where f(x) denotes the features. A common strategy is to learn
a rich parametric or non-parametric model with supervised learning techniques. This
makes the availability of training data crucial for discriminative approaches. Several
learning based prediction models have become popular in tackling vision tasks including
support vector machines (SVM) [58], boosting [218, 84], random forests [35, 118], deep
convolutional neural networks [158], etc. Refer to [87] for a review of different predic-
tion techniques. Next, we briefly review random forests and CNN models as we either
make use of or propose extensions to these models in this thesis.

2.3.1 Random Forests

Random forests [35, 118] are an ensemble of K randomly trained prediction (classifica-
tion or regression) trees, where each tree T (y|f(x),θ k) represents a non-linear function
approximating the posterior P(y|f(x)). The trees are typically binary trees and can be
viewed as performing a discriminative hierarchical clustering of the feature space. And
a simple model fit (e.g., linear model) is used in each cluster.

Trees are grown incrementally from the root node to the leaves and each node repre-
sents a partition of the feature space. These partitions can be any linear or non-linear
functions, but the simple axis-aligned partitions are the most used ones due to their
simplicity and efficiency. For simplicity, let us assume the partition functions are axis-
aligned. At each node, a feature κ and its split value τ are chosen to split the feature
space, so as to minimize an energy function E. Let us consider training the jth node in
a kth tree. Let all the data points falling in that node be S j (due to splitting of its an-
cestor nodes) and T j denotes the discrete set of randomly selected feature axes {(κ,τ)i}
(feature indices and their corresponding values) for the node j. Training the jth node
corresponds to choosing the optimal split θ k

j ∈ T j among the randomly chosen splits that
minimizes an energy function E:

θ
k
j = argmin

γ∈T j

E(S j,γ) (2.13)

Depending on the type of task and data, different energy functions E are used. Each
split γ partitions the training data S j in the node j into two parts SL

j and SR
j which are

assigned to left and right child nodes respectively. A common energy function measures
how well a regression/classification model fit the data in each of the left and right child
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nodes created by a split γ:

E(S j,γ) =−(M(SL
j ,β )+M(SR

j ,β )). (2.14)

Where M(S j,β ) denotes the model likelihood i.e., how well the model with parame-
ters β can explain the data S j. For example, in the case of regression tasks, M can be a
linear regression fit and in the case of classification (like in semantic segmentation), M
can be the classification accuracy. Like this, the trees are recursively grown by splitting
the leaf nodes into left and right child nodes. The set of all node splits θ k = {θ k

j } j=1,··· ,J
represents the parameters of the kth tree. Once a tree is trained, a simple prediction model
is fitted to the data in the leaf nodes. A deep tree might overfit the data and a shallow
tree would under-fit the data and miss important structure. Restricting the tree size cor-
responds to regularizing the model and size should be adaptively chosen based on the
training data. Some training stopping criteria include setting the maximum depth of the
trees; minimum number of data points in each node; a threshold for energy function E,
etc.

Random forests are distinguished from other tree-based supervised learning tech-
niques such as boosted decision trees, by the way different trees are trained in a forest.
Each tree in a random forest is trained independently and randomness is added either in
terms of choosing a random subset of training data for each tree (called bagging [34])
and/or randomly choosing the split candidates (feature indices and their values) at each
node. Typically, the estimates across the trees T (y|f(x),θ k) are averaged to get the final
model P(y|f(x)):

P(y|f(x)) = 1
K ∑

k
T (y|f(x),θ k). (2.15)

Due to the randomness, different trees are identically distributed resulting in a low-
variance estimate when the final estimate is taken as the average across the trees. Ran-
dom forests are highly flexible and several different types of models are conceivable with
using a combination of different splitting criteria. Due to their simplicity and flexibility,
random forests have become a popular choice for supervised learning in vision. Ran-
dom forests are easy to implement and train. Also, they can be easily adapted to a wide
range of classification and regression tasks with relatively simple changes to the model.
Moreover, they are non-parametric in nature with the ability to consume large amounts
of training data. Random forests are successfully applied for vision tasks such as hu-
man pose estimation [228], semantic segmentation [229], etc. In the case of semantic
segmentation, a popular model is to extract TextonBoost features [230] at each pixel and
then train a random forest classifier to predict the class label at each pixel. One of the
crucial advantages of random forests with respect to neural networks is that the loss func-
tion E need not be differentiable. In Chapter 3, we use random forest models to improve
inference in inverse graphics via our informed sampler approach. In Chapter 4, we use
random forests for predicting messages resulting in improved variational inference in
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layered graphical models. Refer to [59] for a comprehensive overview of random forests
and their applications in computer vision and medical image analysis.

2.3.2 Convolutional Neural Networks

Neural networks are a class of models with complex parametric non-linear functions
relating the input x to the target y. The complex non-linear function is usually realized
by stacking a series of simple and differentiable linear and non-linear functions:

P(y|x,θ) = F1(F2(· · ·Fk(x,θk) · · · ,θ2),θ1). (2.16)

Learning involves finding the parameters {θ1,θ2, · · · ,θk} that best approximates the
desired relationship between the input and target variables. The component functions
are usually simple linear functions such as convolutions F(s,θ) = W(θ)s+ b (where
s ∈ Rq, W ∈ Rp×q) interleaved with simple non-linear functions such as rectified linear
units (ReLU) F(s) = max(0,s). A linear function together with a non-linearity is usually
called a single layer in the network. Intermediate layers in a neural network are also
called hidden layers and the number of units in intermediate layers determine the width
of the network. A theoretical result [60, 121] is that any complex continuous function
can be approximated by a simple two layered neural network, given sufficient number
of intermediate units (width of the network). From a practical point of view, neural
networks are attractive because of their fast inference (simple forward pass through the
network) and an end-to-end prediction (going from input to output variables without the
intermediate handcrafted feature extraction) capabilities.

Convolutional neural networks (CNN) are a special class of neural networks tailored
for processing 2D or higher dimensional visual data on a grid. The main characteristic
of CNNs is the use of spatial convolutions instead of fully-connected matrix-vector mul-
tiplications for building linear functions. This greatly reduces the amount of parameters
due to parameter sharing across different spatial locations and speeds up the network
computation and training. One of the main hurdles for the success of CNNs was the
lack of computational resources required to train models with millions of parameters.
Recent availability of large datasets together with efficient model and training imple-
mentations in GPUs made it possible to successfully apply CNNs to real-world vision
tasks. Since CNNs typically have millions of parameters, they are highly prone to overfit
the training data. Advances in simple yet powerful regularization techniques (such as
DropOut [235]) are another reason for the successful deployment of CNN models. Cur-
rently, CNNs are state-of-the-art in many traditional vision problems such as image clas-
sification [111, 152], object detection [97, 209, 211], semantic segmentation [176, 53],
etc.

CNN architectures are typically composed of the following layers: Convolution, pool-
ing, non-linearity, fully-connected (FC) and loss layers. Convolution layers are simple
spatial convolutions, pooling layers do spatial downsampling and FC layers connect each
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Figure 2.5: Sample CNN architecture for character recognition. LeNet-7 [159] archi-
tecture generally used for character recognition (used for Assamese character recognition
in Chapter 5). ‘Cn’ corresponds to convolution layer with n× n filters; ‘MPn’ corre-
sponds to max-pooling layer with window size n; ‘IP’ corresponds to fully-connected
inner-product layer; ‘ReLU’ and ‘TanH’ corresponds to rectified linear units and tanh
non-linear layers and ‘Softmax’ layer produces probabilities for 183 output classes.

output unit to all input units. Non-linear layers are simple yet important functions that
model non-linearities in the CNN model. Some popular non-linear functions include
ReLU, TanH, sigmoid function, etc. Loss layers are problem specific layers that are
used at the end of the network and implement the differentiable empirical loss σ(ŷ,y∗)
between the predicted target ŷ and the ground truth target y∗. Figure 2.5 shows a sam-
ple CNN architecture generally used for character recognition. The input is a grayscale
image x with the size 96× 96 and the output is a vector of probabilities for each class
P(y|x). Also shown are the sizes of intermediate CNN representations.

Training the parameters θk of each layer involves back-propagating the empirical loss
from the loss layers backwards to the early CNN layers. To avoid over-fitting to the train-
ing data, the loss is usually augmented with a regularization over the network parameters.
The optimization objective for a given dataset with m training instances is given as an
average loss L:

L(θ) =
1
m

m

∑
i=1

σ(ŷi,y∗i )+λ r(θ), (2.17)

where r denotes the regularization over the parameters θ with weight λ . Then the
parameters θ are updated using gradient descent methods such as stochastic gradient
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descent (SGD), AdaDelta [275], Adam [144], etc. The parameter update steps to update
a single parameter θ i ∈ θ in SGD are given as:

vt+1 = µvt− γ∇L(θ i
t )

θ
i
t+1 = θt + vt+1

(2.18)

where v,γ,µ ∈ R, vt denotes the parameter update in the previous step and ∇L(θ i
t )

denotes the gradient of loss L with respect to the parameter θ i. Thus the parameter
update vt+1 is a weighted combination of the previous update and the negative gradient
of loss L. The weights µ and γ are called momentum and learning rate respectively
which are generally chosen to obtain good performance on a given validation data. In
practice, since the size of the dataset m is large, only a small subset (batch) of dataset is
used for computing the loss and updating parameters in each step.

Instead of computing the gradients of loss L with respect to all the network parame-
ters in one step, the gradients are back-propagated across the layers. Thus, one of the
fundamental requirements for a component function (except the first layer) in CNNs is
that it should be differentiable with respect to both its inputs and its parameters. Once
the network is trained, inference is a simple forward pass through the network. Like in
many discriminative models, inference in CNNs amounts to evaluation of the model.

In Chapter 5, we generalize the standard spatial convolutions found in CNNs to sparse
high-dimensional filters and in Chapter 7, we propose an efficient CNN module for
long-range spatial propagation of information across intermediate CNN representations.
There are several other types of neural networks, such as recurrent neural networks, that
are currently being used in the computer vision community. Refer to [26, 219] for more
details regarding CNNs or neural networks in general.

2.3.3 Advantages and Limitations

Discriminative models are mainly data-driven methods where inference amounts to sim-
ple evaluation of the model. In general, discriminative models are fast, robust to model
mismatch and are also high performing when trained with enough amounts of data. Dis-
criminative models are attractive because of their practical utility and also their flexibility
in terms of being able to use same model architecture and training for different vision
tasks.

On the other hand, discriminative models also have several limitations.

• Discriminative models are data hungry and typically fail to work where there is lit-
tle data available. Availability of large datasets for several vision tasks and online
annotation tools like Amazon Mechanical Turk [1] help in mitigating this limita-
tion.
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Figure 2.6: Sample CNN architecture for semantic segmentation. Semantic segmen-
tation CNN architectures typically consists of convolution (Conv.), pooling (Pool) and
1×1 convolution layers (FC) interleaved with non-linearities (ReLU). The use of pool-
ing results in lower resolution CNN output which is generally up-sampled with either
interpolation, deconvolution and/or CRF techniques. CRF techniques also help in incor-
porating prior knowledge about semantic segmentation.

• Since discriminative models tend to have a large number of parameters which are
directly learned from data, when the performance is not as expected, it is difficult to
find the cause of the problem and accordingly modify the models. As a result, there
are no guaranteed ways to find the right model architecture for a given task. These
problems are generally handled with either regularizations on model complexity
or with trial-and-error strategy on various model architectures.

• One of the fundamental limitations of discriminative models is the lack of key
approaches to inject prior knowledge into the models. This is especially true in the
case of end-to-end trained models like CNNs. In the case of hand crafted features,
we can inject some prior context in the form of image or pixel features. It is not
easy to inject the knowledge of generative models into discriminative approaches
such as CNNs. For example, in the case of semantic segmentation, post-processing
steps such as DenseCRFs are generally employed to model the relationship (prior
knowledge) between the pixels and output labels. Figure 2.6 shows a prominent
CNN architecture for semantic segmentation.

• Discriminative models are task-specific and a single trained model can not be eas-
ily transferred to other vision problems. Although several transfer learning tech-
niques [196] exists that can help transfer the knowledge across different discrimi-
native models, they are generally task specific and have limited success. One of the
main advantages of CNNs, in comparison to other discriminative models, is that a
CNN trained on image classification task is shown to perform reasonably well on
other related tasks such as semantic segmentation, object detection etc. with only
minor adaptions to the new task.
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Recently, hybrid models combining generative and discriminative models are pro-
posed to alleviate some of the limitations in both and make use of their complementary
advantages. We will discuss these models in the next section.

2.4 Combining Generative and Discriminative Models
As we have argued in the previous sections, generative and discriminative models have
complementary advantages and limitations. Generative models have the advantage of
incorporating prior knowledge while being slow; whereas discriminative models are fast
and robust but it is difficult to incorporate prior knowledge. Typically, generative mod-
els suffer from high bias due to model mismatch, whereas discriminative models suffer
from higher variance. In general, discriminative models work well and are robust to
model mismatch when the available annotated training data is large. If the available data
is small in comparison to the required model complexity, we need ways to constrain
model parameters with the use of prior knowledge. Generative models provide princi-
pled ways to incorporate such prior knowledge and can even make use of unlabelled data
which is generally abundant. The work of [192] is one of the first comparative studies
on generative and discriminative models resulting in the common knowledge of using
discriminative models when the data is abundant, otherwise use generative approach for
a given problem.

We hypothesize that combining generative and discriminative models can leverage
the advantages in both. At the same time, combining these complementary models can
also bring forward the limitations in both. The generative and discriminative models are
often studied in isolation, but during the past decade, several synergistic combinations of
generative and discriminative models have been proposed.

There are 3 ways in which generative and discriminative models can be combined.
1. Use a generative model to improve the model or the inference in the discriminative
model (indicated as ‘Generative→ Discriminative’); 2. Use a discriminative model for
improving the model and/or inference in the generative model (indicated as ‘Discrimina-
tive→ Generative’); and 3. Hybrid generative and discriminative models (indicated as
‘Generative↔ Discriminative’).

Generative→ Discriminative

One way to use generative models for improving discriminative models is by feature
extraction using generative models. The work of [127] showed that the gradients of the
generative models can be used as features in discriminative models. The gradients of
a generative model are called ‘Fisher vectors’ and are particularly useful for building
kernel functions (Fisher kernels) that can be used in kernel based techniques such as
SVMs.

Another popular way to incorporate generative prior knowledge is to provide prior
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constraints while training discriminative models. For instance, CNN models can be
trained with extra loss layers encoding the prior relationship between the output vari-
ables. The overall training loss is a combination of the discriminative prediction loss
and also a generative prior loss. A related strategy for training CNNs is to first train a
discriminative CNN using generative prior loss with large amounts of unlabelled data,
and then fine-tune the network using discriminative prediction loss with limited labelled
data. Instead of training a single discriminative model with prior constraints, [256] pro-
posed to train a sequence of discriminative predictors, each taking as input not only the
input features but also features from previous stage predictions. This way, it is easy to
incorporate the prior constraints on output target variables using features extracted on
predictions. This technique is called ‘Auto-Context’ [256] and the sequence of predic-
tors is usually trained with stacked generalization method [268]. Despite being simple,
auto-context method is shown to be powerful and useful in many vision problems (for
e.g., [256, 137, 132]).

More recently, structured prediction layers [126, 279, 220, 48] are introduced into
discriminative CNN frameworks. These layers are mainly adapted from the models and
inference techniques in generative models. For example, in the case of semantic segmen-
tation CNNs, mean-field inference in fully-connected CRFs can be formulated as recur-
rent neural network modules [69, 279] and is used to augment the existing CNN archi-
tectures resulting in better performance. The work of [48] proposed a way to incorporate
Gaussian CRFs into end-to-end trained semantic segmentation CNNs. In Chapter 5, we
generalize the standard spatial convolutions in CNNs to sparse high-dimensional filters
and show it can be used to incorporate structured prior knowledge into CNNs resulting
in better model and inference. In Chapter 7, we propose a specialized structured pre-
diction module to be used in CNNs for dense pixel prediction tasks such as semantic
segmentation.

Discriminative→ Generative

Although generative models provide an elegant formalism to encode prior knowledge
about the problem, their use is mainly hampered by the difficulty in the posterior infer-
ence. Since discriminative models directly characterize the posterior distribution, they
have the potential to be useful for inference in a corresponding generative model.

Since many of the generative models require approximate Bayesian inference for es-
timating the posterior distribution, some components of the Bayesian inference can be
completely replaced with discriminative models. Inference machines [217] are a success-
ful example of such technique. Inference machines pose the message passing inference
in a given generative model as a sequence of computations that can be performed effi-
ciently by training discriminative models like random forests. Instead of learning com-
plex potential functions and computing messages between the variables, discriminative
predictors that directly learn to pass the messages are proposed. This technique is shown
to perform well on real world tasks [217, 207, 224] such as human pose estimation,
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3D surface layout estimation and 3D point cloud estimation. Inference machines help
bridging the gap between the message passing and random forest techniques. Similar
technique [113] is also shown to be useful to predict messages for expectation prop-
agation [184] inference in generative models. More recently, [171] proposed to use
discriminative deep learning models for predicting messages in message passing infer-
ence.

By completely replacing the components of Bayesian inference with discriminative
predictors, we lose the theoretical guarantees from the original inference techniques.
However, discriminative models can still be used to improve the inference process. Data
driven Markov chain Monte Carlo (DDMCMC) [257] methods leverage discriminative
models to speed up the MCMC inference. DDMCMC methods have been used in im-
age segmentation [257], object recognition [281], and human pose estimation [162]. In
Chapters 3 and 4, we propose principal techniques for leveraging discriminative models
for Bayesian inference in inverse graphics and layered graphical models respectively.

Another way of using discriminative models to improve generative approaches is to
use discriminative prediction loss for training the generative model parameters. This is
called ‘discriminatively training generative models’ [30, 119, 272] and is akin to using
a generative prior loss for training discriminative models. Such models are also called
hybrid models [157] (discussed more below) if different parameters are used for defining
discriminative and generative models.

Generative↔ Discriminative

It is possible to define both discriminative and generative models for the same task and
train them together. This synergistic training can help in a better model fit in both.
With such hybrid models, it is possible to train with both unlabelled and labelled data
together [157, 185].

Recent advances in deep learning showed that neural network models can also be used
as good approximators for generative models of images (for e.g., [71, 103, 249]). Thus, it
is possible to define a hybrid model with different neural networks approximating the cor-
responding generative and discriminative models for a task, and then train them together.
One popular model in this category is ‘Auto-encoding variational Bayes’ [145, 213].
Here, a generative model with exponential family distributions is approximated with a
neural network. At the same time, variational Bayesian posterior inference in that model
is approximated with a different neural network. Both generative and discriminative (in-
ference) networks are trained by minimizing the variational lower bound (Eq. (2.9)). The
work of [73] uses such hybrid models with recurrent neural networks and an attention
mechanism to tackle vision problems involving multiple unknown number of objects in
an image. These models are shown to perform well on small scale vision problems such
as character recognition and are not scaled for tackling mainstream vision problems.
The formulation of such hybrid models is elegant and has potential to be useful for many
vision tasks.
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Very recently, in a similar spirit to auto-context, [269] proposes to learn a top-down
CNN for capturing the contextual relationships between the target variables. The top-
down generative CNN learns to predict the target variables from the surrounding target
variables (context). This top-down CNN is then coupled with original discriminative
CNN to serve as top-down constraints for intermediate CNN representations. As an ad-
vantage over the auto-context framework where different models are learned at different
stages, a single discriminative model is learned and shown to be sufficient.

Hybrid generative and discriminative CNN models are a very active area of research
with different architectures being proposed frequently. We only discussed a few model
architectures here. It is plausible that in the near future, hybrid generative and discrimi-
native models dominate the field of computer vision.

2.5 Discussion and Conclusions
In this chapter, we have discussed various generative and discriminative computer vision
models. Models form the core of any computer vision system, we choose to discuss
some prominent models in relation to this thesis while highlighting the advantages and
limitations in popular generative and discriminative models.

Generative models are conceptually elegant to incorporate prior knowledge about the
task while their use is mainly hampered by the difficulty of posterior inference. Dis-
criminative models, on the other hand, are robust to model mismatch while being fast
but require large amount of labelled data and there is a lack of standard approaches for
incorporating prior knowledge into them. Hybrid generative and discriminative models,
discussed in the previous section, try to bridge the gap between these two complementary
approaches.

The main aim of this thesis is to improve inference with in various computer vision
models. In Part I of the thesis, we concentrate on improving inference in generative
vision models. We do this by learning separate discriminative models and propose al-
gorithms for better inference in prominent generative models in vision namely inverse
graphics models (Chapter 3) and layered graphical models (Chapter 4).

In Part II of the thesis, we concentrate on improving inference in discriminative vi-
sion models. Since inference is simple evaluation of the model in discriminative models,
we propose techniques for modifying the model itself enabling the introduction of prior
knowledge into CNN models. Specifically, we generalize the standard spatial convo-
lutions in prominent CNN models to sparse high-dimensional filtering (Chapter 5) and
then propose a neural network approach for propagating information across video frames
(Chapter 6). In Chapter 7, we propose a new CNN module that can be added to existing
segmentation CNN architectures that helps in image adaptive filtering of intermediate
CNN units.
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Inference in Generative Vision Models
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Chapter 3

The Informed Sampler
In the previous chapter, we briefly discussed the generative models (Section 2.2) with
their advantages and limitations. With all its intuitive appeal, beauty and simplicity, it is
fair to say that the track record of generative models in computer vision is poor, which is
mainly due to the difficulty of posterior inference. As a result the computer vision com-
munity has favored efficient discriminative approaches. We still believe in the usefulness
of generative models in computer vision, but argue that we need to leverage existing
discriminative or even heuristic computer vision methods. In this chapter, we implement
this idea in a principled way with an informed sampler, which is a mixture sampling tech-
nique, and in careful experiments demonstrate its use on challenging generative models
which contain renderer programs as their components. We concentrate on posterior in-
ference in ‘inverse graphics’ models which is briefly described in Section 2.2.1. With
experiments on diverse ‘inverse graphics’ models, we show that the informed sampler,
using simple discriminative proposals based on existing computer vision technology,
achieves significant improvements of inference.

3.1 Introduction
As discussed in Section 2.2.1, modern computer graphic systems that leverage dedicated
hardware setups produce a stunning level of realism with high frame rates. We believe
that these systems will find its way in the design of generative models and will open
up exciting modeling opportunities. This observation motivates the research question of
this chapter, the design of a general inference technique for efficient posterior inference
in accurate computer graphics systems. As such it can be understood as an instance
of Inverse Graphics [22], which is briefly discussed in Section 2.2.1 and illustrated in
Fig. 3.1 with one of our applications.

The key problem in the ‘inverse graphics’ is the difficulty of posterior inference at
test-time. This difficulty stems from a number of reasons as outlined in Section 2.2.3.
Our aim in this work is to devise an inference technique that is general and allow reuse
in several different models and novel scenarios. On the other hand we want to maintain
correctness in terms of the probabilistic estimates that they produce. One way to improve
on inference efficiency in generative models is to leverage existing computer vision fea-
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Figure 3.1: An example ‘inverse graphics’ problem. A graphics engine renders a 3D
body mesh and a depth image using an artificial camera. By ‘Inverse Graphics’, we refer
to the process of estimating the posterior probability over possible bodies given the depth
image.

tures and discriminative models. In this chapter, we propose the informed sampler, a
Markov chain Monte Carlo (MCMC) method with discriminative proposal distributions.
It can be understood as an instance of a data-driven MCMC method [281], and our aim
is to design a method that is general enough such that it can be applied across different
problems and is not tailored to a particular application.

During sampling, the informed sampler leverages computer vision features and dis-
criminative models to make informed proposals for the state of latent variables and these
proposals are accepted or rejected based on the generative model. The informed sam-
pler is simple and easy to implement, but it enables inference in generative models that
were out of reach for current uninformed samplers. We demonstrate this claim on chal-
lenging models that incorporate rendering engines, object occlusion, ill-posedness, and
multi-modality. We carefully assess convergence statistics for the samplers to investigate
their correctness about the probabilistic estimates. Our informed sampler uses existing
computer vision technology such as histogram-of-gradients features (HoG) [61], and the
OpenCV library, [33], to produce informed proposals. Likewise one of our models is an
existing computer vision model, the BlendSCAPE model, a parametric model of human
bodies [117].

In Section 3.2, we discuss related work and explain our informed sampler approach
in Section 3.3. Section 3.4 presents baseline methods and experimental setup. Then
we present experimental analysis of informed sampler with three diverse problems of
estimating camera extrinsics (Section 3.5.1), occlusion reasoning (Section 3.5.2) and
estimating body shape (Section 3.5.3). We conclude with a discussion of future work in
Section 3.6.
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3.2 Related Work
This work stands at the intersection of computer vision, computer graphics, and machine
learning; it builds on previous approaches we will discuss below.

There is a vast literature on approaches to solve computer vision problems by means of
generative models. We mention some works that also use an accurate graphics process as
a generative model. This includes applications such as indoor scene understanding [65],
human pose estimation [162], hand pose estimation [63] and many more. Most of these
works are however interested in inferring MAP solutions, rather than the full posterior
distribution.

Our method is similar in spirit to a Data Driven Markov Chain Monte Carlo (DDM-
CMC) methods that use a bottom-up approach to help convergence of MCMC sam-
pling. DDMCMC methods have been used in image segmentation [257], object recogni-
tion [281], and human pose estimation [162]. The idea of making Markov samplers data
dependent is very general, but in the works mentioned above, lead to highly problem
specific implementations, mostly using approximate likelihood functions. Since these
methods provide specialized solutions for a particular problem, they are not easily trans-
ferable to new problems. In contrast, we aim to provide a simple, yet efficient and general
inference technique for problems where an accurate generative model exists. Because
our method is general we believe that it is easy to adapt to a variety of new models and
tasks.

The idea to invert graphics [22] in order to understand scenes also has roots in the
computer graphics community under the term ‘inverse rendering’. The goal of inverse
rendering however is to derive a direct mathematical model for the forward light transport
process and then to analytically invert it. The work of [208] falls in this category. The
authors formulate the light reflection problem as a convolution, to then cast the inverse
light transport problem as a deconvolution. While this is a very elegant way to pose
the problem, it requires a specification of the inverse process, a requirement generative
modeling approaches try to circumvent.

Our approach can also be viewed as an instance of a probabilistic programming ap-
proach. In the recent work of [179], the authors combine graphics modules in a proba-
bilistic programming language to formulate an approximate Bayesian computation. In-
ference is then implemented using Metropolis-Hastings (MH) sampling. This approach
is appealing in its generality and elegance, however we show that for our graphics prob-
lems, a plain MH sampling approach is not sufficient to achieve reliable inference and
that our proposed informed sampler can achieve robust convergence in these challenging
models. Another piece of work from [236] is similar to our proposed inference method
in that the knowledge about the forward process is learned as “stochastic inverses”, then
applied for MCMC sampling in a Bayesian network. In the present work, we devise an
MCMC sampler that works in both a multi-modal problem as well as for inverting an
existing piece of image rendering code. In summary, our method can be understood in a
similar context as the above-mentioned papers, including [179].
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3.3 The Informed Sampler

In general, inference about the posterior distribution is challenging because for a complex
model p(x|y) no closed-form simplifications can be made. This is especially true in the
case that we consider, where p(x|y) corresponds to a graphics engine rendering images.
Despite this apparent complexity, we observe the following: for many computer vision
applications there exist well performing discriminative approaches, which, given the im-
age, predict some target variables y or distributions thereof. These do not correspond
to the posterior distribution that we are interested in, but, intuitively the availability of
discriminative inference methods should make the task of inferring p(y|x) easier. Fur-
thermore a physically accurate generative model can be used in an offline stage prior
to inference to generate as many samples as we would like or can afford computation-
ally. Again, intuitively this should allow us to prepare and summarize useful information
about the distribution in order to accelerate the test-time inference.

Concretely, in our case we will use a discriminative method to provide a global den-
sity TG(y|x), which we then use in a valid MCMC inference method. The standard
Metropolis-Hasting Markov Chain Monte Carlo (MCMC) is already described in Sec-
tion 2.2.1 of the previous chapter, where in each time-step, a proposal is made with a
proposal distribution which is then either accepted or rejected based on the acceptance
probability:

1. Propose a transition using a proposal distribution T and the current state yt

ȳ∼ T (·|yt)

2. Accept or reject the transition based on Metropolis Hastings (MH) acceptance rule:

yt+1 =

{
ȳ, rand(0,1)< min

(
1, π(ȳ)T (ȳ→yt)

π(yt)T (yt→ȳ)

)
,

yt , otherwise.

Refer to Section 2.2.1 for more details about MCMC sampling. Different MCMC
techniques mainly differ in the type of the proposal distribution T . Next, we describe our
informed proposal distribution which we use in standard Metropolis-Hastings sampling
resulting in our proposed ‘Informed Sampler’ technique.

3.3.1 Informed Proposal Distribution

We use a common mixture kernel for Metropolis-Hastings (MH) sampling. Given the
present target sample yt , the informed proposal distribution for MH sampling is given as:

Tα(·|x,yt) = α TL(·|yt)+(1−α)TG(·|x). (3.1)
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Here TL is an ordinary local proposal distribution, for example a multivariate Normal
distribution centered around the current sample yt , and TG is a global proposal distribu-
tion independent of the current state. We inject knowledge by conditioning the global
proposal distribution TG on the image observation x. We learn the informed proposal
TG(·|x) discriminatively in an offline training stage using a non-parametric density esti-
mator described below.

The mixture parameter α ∈ [0,1] controls the contribution of each proposal, for α = 1
we recover MH. For α = 0 the proposal Tα would be identical to TG(·|x) and the resulting
Metropolis sampler would be a valid Metropolized independence sampler [174]. With
α = 0, we call this baseline method ‘Informed Independent MH’ (INF-INDMH). For
intermediate values, α ∈ (0,1), we combine local with global moves in a valid Markov
chain. We call this method ‘Informed Metropolis Hastings’ (INF-MH).

3.3.2 Discriminatively Learning TG

The key step in the construction of TG is to include some discriminative information
about the sample x. Ideally we would hope to have TG propose global moves which im-
prove mixing and even allow mixing between multiple modes, whereas the local proposal
TL is responsible for exploring the density locally. To see that this is possible in principle,
consider the case of a perfect global proposal where TG matches the true posterior distri-
bution, that is, TG(y|x) = P(y|x). In this case, we would get independent samples with
α = 0 because every proposal is accepted. In practice TG is only an approximation to the
true posterior P(y|x). If the approximation is good enough then the mixture of local and
global proposals will have a high acceptance rate and explore the density rapidly.

In principle, we can use any conditional density estimation technique for learning a
proposal TG from samples. Typically high-dimensional density estimation is difficult and
even more so in the conditional case; however, in our case we do have the true generating
process available to provide example pairs (y,x). Therefore we use a simple but scalable
non-parametric density estimation method based on clustering a feature representation
of the observed image, v(x) ∈ Rd . For each cluster we then estimate an unconditional
density over y using kernel density estimation (KDE). We chose this simple setup since
it can easily be reused in many different scenarios, in the experiments we solve diverse
problems using the same method. This method yields a valid transition kernel for which
detailed balance holds. In addition to the KDE estimate for the global transition ker-
nel we also experimented with a random forest approach that maps the observations to
transition kernels TG. More details will be given in Section 3.5.3.

For the feature representation, we leverage successful discriminative features and heuris-
tics developed in the computer vision community. Different task specific feature repre-
sentations can be used in order to provide invariance to small changes in y and to nuisance
parameters. The main inference method remains the same across all problems.

We construct the KDE for each cluster and we use a relatively small kernel bandwidth
in order to accurately represent the high probability regions in the posterior. This is
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Algorithm 1 Learning a global proposal TG(y|x)
1. Simulate {(y(i),x(i))}i=1,...,n from p(x|y) p(y)
2. Compute a feature representation v(x(i))
3. Perform k-means clustering of {v(x(i))}i
4. For each cluster C j⊂{1, . . . ,n}, fit a kernel density estimate KDE(C j) to the vectors
y{C j}

Algorithm 2 INF-MH (Informed Metropolis-Hastings)
Input: observed image x
TL← Local proposal distribution (Gaussian)
C← cluster for v(x)
TG← KDE(C) (as obtained by Alg. 1)
T = αTL +(1−α)TG
π(y|x)← Posterior distribution P(y|x)
Initialize y1
for t = 1 to N−1 do

1. Sample ȳ∼ T (·)
2. γ = min

(
1, π(ȳ|x)T (ȳ→yt)

π(yt |x)T (yt→ȳ)

)

if rand(0,1)< γ then
yt+1 = ȳ

else
yt+1 = yt

end if
end for

similar in spirit to using only high probability regions as “darts” in the Darting Monte
Carlo sampling technique of [233]. We summarize the offline training in Algorithm 1.

At test time, this method has the advantage that given an image x we only need to
identify the corresponding cluster once using v(x) in order to sample efficiently from the
kernel density TG. We show the full procedure in Algorithm 2.

This method yields a transition kernel that is a mixture kernel of a reversible symmet-
ric Metropolis-Hastings kernel and a metropolized independence sampler. The combined
transition kernel T is hence also reversible. Because the measure of each kernel dom-
inates the support of the posterior, the kernel is ergodic and has the correct stationary
distribution [38]. This ensures correctness of the inference and in the experiments we
investigate the efficiency of the different methods in terms of convergence statistics.
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3.4 Setup and Baseline Methods

In the remainder of the chapter we demonstrate the proposed method in three different
experimental setups. For all experiments, we use four parallel chains initialized at differ-
ent random locations sampled from the prior. The reported numbers are median statistics
over multiple test images except when noted otherwise.

3.4.1 Baseline Methods

Metropolis Hastings (MH) Described in Section 2.2.1, corresponds to α = 1, we use
a symmetric diagonal Gaussian distribution, centered at yt .

Metropolis Hastings within Gibbs (MHWG) We use a Metropolis Hastings scheme
in a Gibbs sampler, that is, we draw from one-dimensional conditional distributions for
proposing moves and the Markov chain is updated along one dimension at a time. We
further use a blocked variant of this MHWG sampler, where we update blocks of dimen-
sions at a time, and denote it by BMHWG.

Parallel Tempering (PT) We use Parallel Tempering to address the problem of sam-
pling from multi-modal distributions [241, 95]. This technique is also known as “replica
exchange MCMC sampling” [124]. We run different parallel chains at different tem-
peratures T , sampling π(·) 1

T and at each sampling step propose to exchange two ran-
domly chosen chains. In our experiments we run three chains at temperature levels
T ∈ {1,3,27} that were found to be best working out of all combinations in {1,3,9,27}
for all experiments individually. The highest temperature levels corresponds to an almost
flat distribution.

Regeneration Sampler (REG-MH) We implemented a regenerative MCMC method
[191] that performs adaption [96] of the proposal distribution during sampling. Adapt-
ing the proposal distribution with existing MCMC samples is not straight-forward as this
would potentially violate the Markov property of the chain [13]. One approach is to
identify times of regeneration at which the chain can be restarted and the proposal dis-
tribution can be adapted using samples drawn previously. Several approaches to identify
good regeneration times in a general Markov chain have been proposed [14, 194]. We
build on [191] that proposed two splitting methods for finding the regeneration times.
Here, we briefly describe the method that we implemented in this study.

Let the present state of the sampler be yt and let the independent global proposal
distribution be TG. When ȳ ∼ TG is accepted according to the MH acceptance rule, the
probability of a regeneration is given by:
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r(yt , ȳ) =





max{ c
w(yt)

, c
w(ȳ)}, if w(yt)> c and w(ȳ)> c,

max{w(yt)
c , w(ȳ)

c }, if w(yt)< c and w(ȳ)< c,
1, otherwise,

(3.2)

where c > 0 is an arbitrary constant and w(yt) =
π(yt)
TG(yt)

. The value of c can be set to
maximize the regeneration probability. At every sampling step, if a sample from the
independent proposal distribution is accepted, we compute regeneration probability using
equation (3.2). If a regeneration occurs, the present sample is discarded and replaced with
one from the independent proposal distribution TG. We use the same mixture proposal
distribution as in our informed sampling approach where we initialize the global proposal
TG with a prior distribution and at times of regeneration fit a KDE to the existing samples.
This becomes the new adapted distribution TG. Refer to [191] for more details of this
regeneration technique. In the work of [10], this regeneration technique is used with
success in a Darting Monte Carlo sampler.

We use the mixture kernel (Eq. (3.1)) as proposal distribution and adapt only the global
part TG(·|x). This is initialized as the prior over target variables P(y) and at times of
regeneration we fit a KDE to the already drawn samples. For comparison we used the
same mixture coefficient α as for INF-MH.

3.4.2 MCMC Diagnostics

We use established methods for monitoring the convergence of our MCMC method [139,
81]. In particular, we report different diagnostics. We compare the different samplers
with respect to the number of iterations instead of time. The forward graphics process
significantly dominates the runtime and therefore the iterations in our experiments cor-
respond linearly to the runtime.

Acceptance Rate (AR) The ratio of accepted samples to the total Markov chain length.
The higher the acceptance rate, the fewer samples we need to approximate the posterior.
Acceptance rate indicates how well the proposal distribution approximates the true dis-
tribution locally.

Potential Scale Reduction Factor (PSRF) The PSRF diagnostics [93, 37] is derived
by comparing within-chain variances with between-chain variances of sample statistics.
For this, it requires independent runs of multiple chains (4 in our case) in parallel. Be-
cause our sample y is multi-dimensional, we estimate the PSRF for each parameter di-
mension separately and take the maximum PSRF value as final PSRF value. A value
close to one indicates that all chains characterize the same distribution. This does not
imply convergence, as the chains may all collectively miss a mode. However, a PSRF
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value much larger than one is a certain sign of the lack of convergence. PSRF also
indicates how well the sampler visits different modes of a multi-modal distribution.

Root Mean Square Error (RMSE) During our experiments we have access to the
input parameters y∗ that generated the image. To assess whether the posterior distribu-
tion recovers the correct value, we report the RMSE between the posterior expectation
EP(y|x)[G(y)] and the value G(y∗) of the generating input. Since there is noise being
added to the observation, we do not have access to the ground truth posterior expectation
and therefore this measure is only an indicator. Under convergence all samplers would
agree on the same correct value.

3.4.3 Parameter Selection

For each sampler we individually selected hyper-parameters that gave the best PSRF
value after 10k iterations. In case the PSRF does not differ for multiple values, we chose
the one with the highest acceptance rate. We include a detailed analysis of the baseline
samplers and parameter selection in Appendix A.1.

3.5 Experiments
We studied the use of informed sampler with three different problem scenarios: Estimat-
ing camera extrinsics (Section 3.5.1), occlusion reasoning (Section 3.5.2) and estimating
body shape (Section 3.5.3).

3.5.1 Estimating Camera Extrinsics

We implement the following simple graphics scenario to create a challenging multi-
modal problem. We render a cubical room of edge length 2 with a point light source
in the center of the room, (0,0,0), from a camera somewhere inside the room. The
camera parameters are described by its (x,y,z)-position and the orientation, specified by
yaw, pitch, and roll angles. The inference process consists of estimating the posterior
over these 6D camera parameters y. See Fig. 3.2 for two example renderings. Posterior
inference is a highly multi-modal problem because the room is a cubical and thus sym-
metric. There are 24 different camera parameters that will result in the same image. This
is also shown in Fig. 3.2 where we plot the position and orientation (but not camera roll)
of all camera parameters that create the same image. A rendering of a 200×200 image
with a resolution of 32bit using a single core on an Intel Xeon 2.66GHz machine takes
about 11ms on average.

A small amount of isotropic Gaussian noise is added to the rendered image G(y), us-
ing a standard deviation of σ = 0.02. The posterior distribution we try to infer is then:
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Figure 3.2: Sample images for the experiment on ‘Estimating Camera Extrinsics’.
Two rendered room images with possible camera positions and headings that produce
the same image. Not shown are the orientations; in the left example all six headings can
be rolled by 90,180, and 270 degrees for the same image.

p(y|x) ∝ p(x|y)p(y) =N (x|G(y),σ2)Uniform(y). The uniform prior over location pa-
rameters ranges between −1.0 and 1.0 and the prior over angle parameters is modeled
with wrapped uniform distribution over [−π,π].

To learn the informed part of the proposal distribution from data, we computed a
histogram of oriented gradients (HOG) descriptor [61] from the image, using 9 gradient
orientations and cells of size 20×20 yielding a feature vector v(x)∈R900. We generated
300k training images using a uniform prior over the camera extrinsic parameters, and
performed k-means clustering using 5k cluster centers based on the HOG feature vectors.
For each cluster cell, we then computed and stored a KDE for the 6 dimensional camera
parameters, following the steps in Algorithm 1. As test data, we create 30 images using
extrinsic parameters sampled uniform at random over their range.

Results

We show results in Fig. 3.3. We observe that both MH and PT yield low acceptance rates
(AR) compared to other methods. However parallel tempering appears to overcome the
multi-modality better and improves over MH in terms of convergence. The same holds
for the regeneration technique, we observe many regenerations, good convergence and
AR. Both INF-INDMH and INF-MH converge quickly.

In this experimental setup, we have access to the 24 different exact modes. We analyze
how quickly the samplers visit the modes and whether or not they capture all of them. For
every different instance, the pairwise distances between the modes changes, therefore we
chose to define ‘visiting a mode’ in the following way. We compute a Voronoi tessellation
with the modes as centers. A mode is visited if a sample falls into its corresponding
Voronoi cell, that is, it is closer than to any other mode. Sampling uniform at random
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Figure 3.3: Results of the ‘Estimating Camera Extrinsics’ experiment. Acceptance
Rates (left), PSRFs (middle), and average number of modes visited (right) for different
sampling methods. We plot the median/average statistics over 30 test examples.

would quickly find the modes (depending on the cell sizes) but is not a valid sampler
that characterizes the desired posterior distribution. We also experimented with balls of
different radii around the modes and found a similar behavior to the one we report here.
Figure 3.3 (right) shows results for various samplers. We find that INF-MH discovers
different modes quicker when compared to other baseline samplers. Just sampling from
the global proposal distribution INF-INDMH is initially visiting more modes (it is not
being held back by local steps) but is dominated by INF-MH over some range. This
indicates that the mixture kernel takes advantage of both local and global moves, either
one of them is exploring slower. Also in most examples, all samplers miss some modes
under our definition, the average number of discovered modes is 21 for INF-MH and
even lower for MH.

Figure 3.4 shows the effect of mixture coefficient (α) on the informed sampling INF-
MH. Since there is no significant difference in PSRF values for 0 ≤ α ≤ 0.7, we chose
0.7 due to its high acceptance rate. Likewise, the parameters of the baseline samplers
are chosen based on the PSRF and acceptance rate metrics. See Appendix A.1.1 for the
analysis of the baseline samplers and the parameter selection.

We also tested the MHWG sampler and found that it did not converge even after 100k
iterations, with a PSRF value around 3. This is to be expected since single variable up-
dates will not traverse the multi-modal posterior distributions fast enough due to the high
correlation of the camera parameters. In Fig. 3.5, we plot the median auto-correlation of
samples obtained by different sampling techniques, separately for each of the six extrin-
sic camera parameters. The informed sampling approach (INF-MH and INF-INDMH)
appears to produce samples which are more independent compared to other baseline
samplers.

As expected, some knowledge of the multi-modal structure of the posterior needs to
be available for the sampler to perform well. The methods INF-INDMH and INF-MH
have this information and perform better than baseline methods and REG-MH.
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Figure 3.4: Role of mixture coefficient. PRSFs and Acceptance rates corresponding to
various mixture coefficients (α) of INF-MH sampling in ‘Estimating Camera Extrinsics’
experiment.

Figure 3.5: Independence of obtained samples. Auto-Correlation of samples obtained
by different sampling techniques in camera extrinsics experiment, for each of the six
extrinsic camera parameters.

3.5.2 Occluding Tiles

In a second experiment, we render images depicting a fixed number of six quadratic tiles
placed at a random location (x,y) in the image at a random depth z and orientation θ .
We blur the image and add a bit of Gaussian random noise (σ = 0.02). An example is
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depicted in Fig. 3.6(a), note that all the tiles are of the same size, but farther away tiles
look smaller. A rendering of one 200×200 image takes about 25ms on average. Here, as
prior, we again use the uniform distribution over the 3D cube for tile location parameters,
and wrapped uniform distribution over [−π

4 ,
π

4 ] for tile orientation angle. To avoid label
switching issues, each tile is given a fixed color and is not changed during the inference.

We chose this experiment such that it resembles the ‘dead leaves model’ of [160], be-
cause it has properties that are commonplace in computer vision. It is a scene composed
of several objects that are independent, except for occlusion, which complicates the prob-
lem. If occlusion did not exist, the task is readily solved using a standard OpenCV [33]
rectangle finding algorithm (minAreaRect). The output of such an algorithm can be seen
in Fig. 3.6(c), and we use this algorithm as a discriminative source of information. This
problem is higher dimensional than the previous one (24, due to 6 tiles of 4 parameters).
Inference becomes more challenging in higher dimensions and our approach without
modification does not scale well with increasing dimensionality. One way to approach
this problem, is to factorize the joint distribution into blocks and learn informed propos-
als separately. In the present experiment, we observed that both baseline samplers and
the plain informed sampling fail when proposing all parameters jointly. Since the tiles
are independent except for the occlusion, we can approximate the full joint distribution
as product of block distributions where each block corresponds to the parameters of a
single tile. To estimate the full posterior distribution, we learn global proposal distribu-
tions for each block separately and use a block-Gibbs like scheme in our sampler where
we propose changes to one tile at a time, alternating between tiles.

Figure 3.6: A visual result in ‘Occluding Tiles’ experiment. (a) A sample rendered
image, (b) Ground truth squares, (c) Rectangle fitting with OpenCV MinAreaRect algo-
rithm and most probable estimates from 5000 samples obtained by (d) MHWG sampler
(best baseline) and (e) the INF-BMHWG sampler. (f) Posterior expectation of the square
boundaries obtained by INF-BMHWG sampling (The first 2000 samples are discarded
as burn-in).

The experimental protocol is the same as before, we render 500k images, apply the
OpenCV MinAreaRect algorithm to fit rectangles and take their found four parameters as
features for clustering (10k clusters). Again KDE distributions are fit to each cluster and
at test time, we assign the observed image to its corresponding cluster. The KDE in that
chosen cluster determines the global sampler TG for that tile. We then use TG to propose

45



Chapter 3 The Informed Sampler

Figure 3.7: Results of the ‘Occluding Tiles’ experiment. Acceptance Rates (left),
PSRFs (middle), and RMSEs (right) for different sampling methods. Median results
for 10 test examples.

an update to all 4 parameters of the tile. We refer to this procedure as INF-BMHWG.
Empirically we find α = 0.8 to be optimal for INF-BMHWG sampling. Analysis of
various samplers is presented in Appendix A.1.2.

Results

An example visual result is shown in Fig. 3.6. We found that the the MH and INF-MH
samplers fail entirely on this problem. Both use a proposal distribution for the entire
state and due to the high dimensionality, there is almost no acceptance (< 1%) and thus
they do not reach convergence. The MHWG sampler, updating one dimension at a time,
is found to be the best among the baseline samplers with acceptance rate of around 42%,
followed by a block sampler that samples each tile separately. The OpenCV algorithm
produces a reasonable initial guess but fails in occlusion cases.

The median diagnostic statistical curves for 10 test examples are shown in Fig. 3.7,
INF-BMHWG by far produces lower reconstruction errors. The block wise informed
sampler INF-BMHWG converges quicker, with higher acceptance rates (≈ 53%), and
lower reconstruction error. Also in Fig 3.6(f) the posterior distribution is visualized,
fully visible tiles are more localized, position and orientation of occluded tiles more un-
certain. Figure A.5, in the Appendix A.1, shows some more visual results. Although the
model is relatively simple, all the baseline samplers perform poorly and discriminative
information is crucial to enable accurate inference. Here the discriminative information
is provided by a readily available heuristic in the OpenCV library.

This experiment illustrates a variation of the informed sampling strategy that can be
applied to sampling from high-dimensional distributions. Inference methods for general
high-dimensional distributions is an active area of research and intrinsically difficult.
The occluding tiles experiment is simple but illustrates this point, namely that all non-
block baseline samplers fail. Block sampling is a common strategy in such scenarios and
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many computer vision problems have such block-structure. Again the informed sampler
improves in convergence speed over the baseline method. Other techniques that produce
better fits to the conditional (block-) marginals should give faster convergence.

3.5.3 Estimating Body Shape
The last experiment is motivated by a real world problem: estimating the 3D body shape
of a person from a single static depth image. With the recent availability of cheap active
depth sensors, the use of RGBD data has become ubiquitous in computer vision [223,
138].

To represent a human body, we use the BlendSCAPE model [117], which updates the
originally proposed SCAPE model [11] with better training and blend weights. This
model produces a 3D mesh of a human body as shown in Fig. 3.8 as a function of shape
and pose parameters. The shape parameters allow us to represent bodies of many builds
and sizes, and includes a statistical characterization (being roughly Gaussian). These
parameters control directions in deformation space, which were learned from a corpus of
roughly 2000 3D mesh models registered to scans of human bodies via PCA. The pose
parameters are joint angles which indirectly control local orientations of predefined parts
of the model.

Our model uses 57 pose parameters and any number of shape parameters to produce
a 3D mesh with 10,777 vertices. We use the first 7 SCAPE components to represent the
shape of a person and keep the pose fixed. The camera viewpoint, orientation, and pose
of the person is held fixed. Thus a rendering process takes y ∈ R7, generates a 3D mesh
representation of it and projects it through a virtual depth camera to create a depth image
of the person x. This can be done in various resolutions, we chose 430×260 with depth
values represented as 32bit numbers in the interval [0,4]. On average, a full render path
takes about 28ms. We add Gaussian noise with standard deviation of 0.02 to the created
depth image. See Fig.3.8(left) for an example.

We used very simple low level features for feature representation. In order to learn
the global proposal distribution we compute depth histogram features on a 15×10 grid
on the image. For each cell we record the mean and variance of the depth values. Addi-
tionally we add the height and the width of the body silhouette as features resulting in a
feature vector v(x) ∈ R302. As normalization, each feature dimension is divided by the
maximum value in the training set. We used 400k training images sampled from the stan-
dard normal prior distribution and 10k clusters to learn the KDE proposal distributions
in each cluster cell.

For this experiment, we also experimented with a different conditional density estima-
tion approach using a forest of random regression trees [36, 35]. See Section 2.3.1 for
a brief overview of random forests. In the previous experiments, utilizing the KDE esti-
mates, the discriminative information entered through the feature representation. Then,
suppose if there was no relation between some observed features and the variables that
we are trying to infer, we would require a large number of samples to reliably estimate
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Figure 3.8: Inference of body shape from a depth image. A sample test result showing
the result of 3D mesh reconstruction with the first 1000 samples obtained using our INF-
MH sampling method. We visualize the angular error (in degrees) between the estimated
and ground truth edge and project onto the mesh.

the densities in the different clusters. The regression forest can adaptively partition the
parameter space based on observed features and is able to ignore uninformative features,
thus may lead to better fits of the conditional densities. It can thus be understood as the
adaptive version of the k-means clustering technique that solely relies on the used metric
(Euclidean in our case).

In particular, we use the same features as for k-means clustering but grow the regres-
sion trees using a mean square error criterion for scoring the split functions. A forest of
10 binary trees with a depth of 15 is grown, with the constraint of having a minimum of
40 training points per leaf node. Then for each of the leaf nodes, a KDE is trained as
before. At test time the regression forest yields a mixture of KDEs as the global proposal
distribution. We denote this method as INF-RFMH in the experiments.

Instead of using one KDE model for each cluster, we could also explore a regression
approach, for example using a discriminative linear regression model to map observa-
tions into proposal distributions. By using informative covariates in the regression model,
one should be able to overcome the curse of dimensionality. Such a semi-parametric ap-
proach would allow to capture explicit parametric dependencies of the variables (for
example linear dependencies) and combine them with non-parametric estimates of the
residuals. We are exploring this technique as future work.

Again, we chose parameters for all samplers individually, based on empirical mixing
rates. For informed samplers, we chose α = 0.8, and a local proposal standard deviation
of 0.05. The full analysis for all samplers is included in Appendix A.1.3.

Results

We tested the different approaches on 10 test images that are generated by the shape
parameters drawn from the standard normal prior distribution. Figure 3.9 summarizes
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the results of the sampling methods. We make the following observations. The base-
lines methods MH, MHWG, and PT show inferior convergence results and, MH and PT
also suffer from lower acceptance rates. Just sampling from the distribution of the dis-
criminative step (INF-INDMH) is not enough, because the low acceptance rate indicates
that the global proposals do not represent the correct posterior distribution. However,
combined with a local proposal in a mixture kernel, we achieve a higher acceptance rate,
faster convergence and a decrease in RMSE. The regression forest approach has slower
convergence than INF-MH. In this example, the regeneration sampler REG-MH does
not improve over simpler baseline methods. We attribute this to rare regenerations which
may be improved with more specialized methods.

We believe that our simple choice of depth image representation can also be signif-
icantly improved. For example, features can be computed from identified body parts,
something that the simple histogram features have not taken into account. In the com-
puter vision literature, some discriminative approaches for pose estimation do exist, most
prominent being the influential work on pose recovery in parts for the Kinect Xbox sys-
tem [228]. In future work, we plan to use similar methods to deal with pose variation
and complicated dependencies between parameters and observations.

Figure 3.9: Results of the ‘Body Shape’ experiment. Acceptance Rates (left), PSRFs
(middle), and RMSEs (right) for different sampling methods in the body shape experi-
ment. Median results over 10 test examples.

3D Mesh Reconstruction

In Fig. 3.8, we show a sample 3D body mesh reconstruction result using the INF-MH
sampler after only 1000 iterations. We visualized the difference of the mean posterior
and the ground truth 3D mesh in terms of mesh edge directions. One can observe that
most differences are in the belly region and the feet of the person. The retrieved pos-
terior distribution allows us to assess the model uncertainty. To visualize the posterior
variance we record standard deviation over the edge directions for all mesh edges. This
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Figure 3.10: Body measurements with quantified uncertainty. Box plots of three body
measurements for three test subjects, computed from the first 10k samples obtained by
the INF-MH sampler. Dotted lines indicate measurements corresponding to ground truth
SCAPE parameters.

is back-projected to achieve the visualization in Fig. 3.8(right). We see that posterior
variance is higher in regions of higher error, that is, our model predicts its own uncer-
tainty correctly [62]. In a real-world body scanning scenario, this information will be
beneficial; for example, when scanning from multiple viewpoints or in an experimental
design scenario, it helps in selecting the next best pose and viewpoint to record. Fig. A.6,
in appendix, shows more 3D mesh reconstruction results using our sampling approach.

Body Measurements

Predicting body measurements has many applications including clothing, sizing and er-
gonomic design. Given pixel observations, one may wish to infer a distribution over
measurements (such as height and chest circumference). Fortunately, our original shape
training corpus includes a host of 47 different per-subject measurements, obtained by
professional anthropometrists; this allows us to relate shape parameters to measurements.
Among many possible forms of regression, regularized linear regression [282] was found
to best predict measurements from shape parameters. This linear relationship allows us
to transform any posterior distribution over SCAPE parameters into a posterior over mea-
surements, as shown in Fig. 3.10. We report for three randomly chosen subjects’ (S1, S2,
and S3) results on three out of the 47 measurements. The dashed lines corresponds to
ground truth values. Our estimate not only faithfully recovers the true value but also
yields a characterization of the full conditional posterior.
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Figure 3.11: Inference with incomplete evidence. Mean 3D mesh and corresponding
errors and uncertainties (std. deviations) in mesh edge directions, for the same test case
as in Fig. 3.8, computed from first 10k samples of our INF-MH sampling method with
(bottom row) occlusion mask in image evidence. (blue indicates small values and red
indicates high values)

Incomplete Evidence

Another advantage of using a generative model is the ability to reason with missing ob-
servations. We perform a simple experiment by occluding a portion of the observed depth
image. We use the same inference and learning codes, with the same parametrization and
features as in the non-occlusion case, but retrain the model to account for the changes in
the forward graphics process. The result of INF-MH, computed on the first 10k samples
is shown in Fig. 3.11. The 3D reconstruction is reasonable even under large occlusion;
the error and the edge direction variance did increase as expected.

3.6 Discussion and Conclusions

This work proposes a method to incorporate discriminative methods into Bayesian in-
ference in a principled way. We augment a sampling technique with discriminative in-
formation to enable inference with global accurate generative models. Empirical results
on three challenging and diverse computer vision experiments are discussed. We care-
fully analyze the convergence behavior of several different baselines and find that the
informed sampler performs well across all different scenarios. This sampler is applica-
ble to general scenarios and in this work we leverage the accurate forward process for
offline training, a setting frequently found in computer vision applications. The main
focus is the generality of the approach, this inference technique should be applicable to
many different problems and not be tailored to a particular problem.
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We show that even for very simple scenarios, most baseline samplers perform poorly
or fail completely. By including a global image-conditioned proposal distribution that
is informed through discriminative inference we can improve sampling performance.
We deliberately use a simple learning technique (KDEs on k-means cluster cells and a
forest of regression trees) to enable easy reuse in other applications. Using stronger and
more tailored discriminative models should lead to better performance. We see this as a
way where top-down inference is combined with bottom-up proposals in a probabilistic
setting.

There are some avenues for future work; we understand this method as an initial step
into the direction of general inference techniques for accurate generative computer vi-
sion models. Identifying conditional dependence structure should improve results, e.g.
recently [236] used structure in Bayesian networks to identify such dependencies. One
assumption in our work is that we use an accurate generative model. Relaxing this as-
sumption to allow for more general scenarios where the generative model is known only
approximately is important future work. In particular for high-level computer vision
problems such as scene or object understanding there are no accurate generative models
available yet but there is a clear trend towards physically more accurate 3D representa-
tions of the world. This more general setting is different to the one we consider in this
chapter, but we believe that some ideas can be carried over. For example, we could create
the informed proposal distributions from manually annotated data that is readily avail-
able in many computer vision data sets. Another problem domain are trans-dimensional
models, that require different sampling techniques like reversible jump MCMC meth-
ods [102, 38]. We are investigating general techniques to inform this sampler in similar
ways as described in this chapter.

We believe that generative models are useful in many computer vision scenarios and
that the interplay between computer graphics and computer vision is a prime candidate
for studying probabilistic inference and probabilistic programming [179]. However, cur-
rent inference techniques need to be improved on many fronts: efficiency, ease of us-
ability, and generality. Our method is a step towards this direction: the informed sam-
pler leverages the power of existing discriminative and heuristic techniques to enable a
principled Bayesian treatment in rich graphics generative models. Our emphasis is on
generality; we aimed to create a method that can be easily reused in other scenarios with
existing code bases. The presented results are a successful example of the inversion of
an involved rendering pass. In the future, we plan to investigate ways to combine exist-
ing computer vision techniques with principled generative models, with the aim of being
general rather than problem specific.
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Consensus Message Passing
In the last chapter, we have proposed a technique to speed up the sampling process for
inverse graphics. Despite having faster convergence with techniques like informed sam-
pler, sampling based inference is often too slow for practical applications. An alternative
inference approach in vision, which is often faster, is message-passing in factor graph
models (see Section 2.2.2). Generative models in computer vision tend to be large, loopy
and layered as discussed in Section 2.2.2. We find that widely-used, general-purpose
message passing inference algorithms such as Expectation Propagation (EP) and Varia-
tional Message Passing (VMP) fail on the simplest of vision models. With these mod-
els in mind, we introduce a modification to message passing that learns to exploit their
layered structure by passing consensus messages that guide inference towards good so-
lutions. Experiments on a variety of problems show that the proposed technique leads
to significantly more accurate inference results, not only when compared to standard
EP and VMP, but also when compared to competitive bottom-up discriminative models.
Refer to Section 2.2.2 for an overview of factor graphs and message-passing inference.

4.1 Introduction
As discussed in Section 2.2.3, perhaps, the most significant challenge of the generative
modeling framework is that inference can be very hard. Sampling-based methods run the
risk of slow convergence, while message passing-based methods (which are the focus of
this chapter) can converge slowly, converge to bad solutions, or fail to converge at all.
Whilst significant efforts have been made to improve the accuracy of message passing al-
gorithms (e.g. by using structured variational approximations), many challenges remain,
including difficulty of implementation, the problem of computational cost and the ques-
tion of how the structured approximation should be chosen. The work in this chapter
aims to alleviate these problems for general-purpose message-passing algorithms.

Our initial observation is that general purpose message passing inference algorithms
(e.g. EP and VMP; [184, 267]) fail on even the simplest of computer vision models. We
claim that in these models the failure can be attributed to the algorithms’ inability to
determine the values of a relatively small number of influential variables which we call
‘global’ variables. Without accurate estimation of these global variables, it can be very
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difficult for message passing to make meaningful progress on the other variables in the
model.

Latent variables in vision models are often organized in a layered structure (also dis-
cussed in Section 2.2.2), where the observed image pixels are at the bottom and high-
level scene parameters are at the top. Additionally, knowledge about the values of the
variables at level l is sufficient to reason about any global variable at layer l + 1. With
these properties in mind, we develop a method called Consensus Message Passing (CMP)
that learns to exploit such layered structures and estimate global variables during the
early stages of inference.

Experimental results on a variety of problems show that CMP leads to significantly
more accurate inference results while preserving the computational efficiency of standard
message passing. The implication of this work is twofold. First, it adds a useful tool to
the toolbox of techniques for improving general-purpose inference, and second, in doing
so it overcomes a bottleneck that has restricted the use of model-based machine learning
in computer vision.

This chapter is organized as follows. In Section 4.2, we discuss related work and ex-
plain our CMP approach in Section 4.3. Then we present experimental analysis of CMP
with three diverse generative vision models in Section 4.4. We conclude with a discus-
sion in Section 4.5.

4.2 Related Work
Inspiration for CMP stems from the kinds of distinctions that have been made for decades
between so-called ‘intuitive’, bottom-up, fast inference techniques, and iterative ‘ratio-
nal’ inference techniques [115]. CMP can be seen as an implementation of such ideas
in the context of message passing, where the consensus messages form the ‘intuitive’
part of inference and the following standard message passing forms the ‘rational’ part.
Analogues to intuitive and rational inference also exist for sampling, where bottom-up
techniques are used to compute proposals for MCMC, leading to significant speedup in
inference [257, 236] (Chapter 3). The works of [213] and [145] proposed techniques for
learning the parameters of both the generative model and the corresponding recognition
model.

The idea of ‘learning to infer’ also has a long history. Early examples include [116],
where a dedicated set of ‘recognition’ parameters are learned to drive inference. In more
modern instances of such ideas [190, 217, 68, 224, 189], message passing is performed
by a sequence of predictions defined by a graphical model, and the predictors are jointly
trained to ensure that the system produces coherent labelings. However, in these tech-
niques, the resulting inference procedure no longer corresponds to the original (or per-
haps to any) graphical model. An important distinction of CMP is that the predictors fit
completely within the framework of message passing and final inference results corre-
spond to valid fixed points in the original model of interest.
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Finally, we note recent works of [113] and [75] that make use of regressors (neural
networks and random forests, respectively) to learn to pass EP messages. These works
are concerned with reducing the computational cost of computing individual messages
and do not make any attempt to change the accuracy or rate of convergence in message
passing inference as a whole. In contrast, CMP learns to pass messages specifically with
the aim of reducing the total number of iterations required for accurate inference in a
given generative model.

4.3 Consensus Message Passing
Consensus message passing exploits the layered characteristic of vision models in order
to overcome the aforementioned inference challenges. For illustration, two layers of la-
tent variables of such a model are shown in Fig. 4.1a using factor graph notation (black).
Here the latent variables below (hb = {hb

k}) are a function of the latent variables above
(ha = {ha

k}) and the global variables p and q, where k ranges over pixels (in this case
|k| = 3). As we will see in the experiments that follow, this is a recurring pattern that
appears in many models of interest in vision. For example, in the case of face modeling,
the ha variables correspond to the normals ni, the global variable p to the light vector l,
and hb to the shading intensities si (see Fig. 4.6b).

Our reasoning follows a recursive structure. Assume for a moment that in Fig. 4.1a,
the messages from the layer below to the inter-layer factors (blue) are both informative
and accurate (e.g. due to being close to the observed pixels). We will refer to these
messages collectively as contextual messages. It would be desirable, for purposes of
both speed and accuracy, that we could ensure that the messages sent to the layer above
(ha) are also accurate and informative. If we had access to an oracle that could give us
the correct belief for the global variables (p and q) for the image, we could send accurate
initial messages from p and q and then compute informative and accurate messages from
the inter-layer factors to the layer above.

In practice, however, we do not have access to such an oracle. In this work we train
regressors to predict the values of the global variables given all the messages from the
layer below. Should this prediction be good enough, the messages to the layer above
will be informative and accurate, and the inductive argument will hold for further lay-
ers (if any) above in the factor graph. We describe how these regressors are trained in
Section 4.3.1. The approach consists of the following two components:

1. Before inference, for each global variable in different layers of the model, we train
a regressor to predict some oracle’s value for the target variable given the values
of all the messages from the layer below (i.e. the contextual messages, Fig. 4.1a,
blue),

2. During inference, each regressor sends this belief in the form of a consensus mes-
sage (Fig. 4.1a, red) to its target variable.
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Figure 4.1: Consensus message passing. Vision models tend to be large, layered and
loopy. (a) Two adjacent layers of the latent variables of a model of this kind (black).
In CMP, consensus messages (red) are computed from contextual messages (blue) and
sent to global variables (p and q), guiding inference in the layer. (b) Consensus message
passing of a different kind for situations where loops in the graphical model are due to
global variables in other layers.

In some models, it will be useful to employ a second type of CMP, illustrated graph-
ically in Fig. 4.1b, where global layer variables are absent and loops in the graphical
model are due to global variables in other layers. In this case, a consensus message is
sent to each variable in the latent layer above, given all the contextual messages.

Any message passing schedule can be used subject to the constraint that the consensus
messages are given maximum priority within a layer and that they are sent bottom up.
Naturally, a consensus message can only be sent after its contextual messages have been
computed. It is desirable to be able to ensure that the fixed point (result at convergence)
reached under this scheme is also a fixed point of standard message passing in the model.
One approach for this is to reduce the certainty of the consensus messages over the
course of inference, or to only pass them in the first few iterations. In our experiments
we found that even passing consensus messages only in the first iteration led to accurate
inference, and therefore we follow this strategy for the remainder of the chapter. It is
worth emphasizing that message-passing equations remain unchanged and we used the
same scheduling scheme in all our experiments (i.e. no need for manual tuning).

It is important to highlight a crucial difference between consensus message passing
and heuristic initialization. In the latter, predictions are made from the observations no
matter how high up in the hierarchy the target variable is, whereas in CMP predictions are
made using messages that are sent from variables immediately below the target variables
of interest. The CMP prediction task is much simpler, since the relationship between the
target variables and the variables in the layer immediately below is much less complex
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than the relationship between the target variables and the observations. Furthermore, we
know from the layered structure of the model that all relevant information from the ob-
servations is contained in the variables in the layer below. This is because target variables
at layer l+1 are conditionally independent of all layers l−1 and below, given the values
of layer l.

One final note on the capacity of the regressors. Of course it is true that an infinite
capacity regressor can make perfect predictions given enough data (whether using CMP
or heuristic initialization). However, we are interested in practical ways of obtaining
accurate results for models of increasing complexity, where lack of capable regressors
and unlimited data is inevitable. One important feature of CMP is that it makes use of
predictors in a scalable way, since regressions are only made between adjacent latent
layers.

4.3.1 Predicting Messages for CMP
To recap, the goal is to perform inference in a layered model of observed variables x
with latent variables h. Each predictor ∆t (with target t) is a function of a collection of its
contextual messages c = {ck} (incoming from the latent layer below hb), that produces
the consensus message m, i.e. m = ∆t(c).

We adopt an approach in which we learn a function for this task that is parameterized
by θθθ , i.e. m≡ F(c|θθθ). This can be seen as an instance of the canonical regression task.
For a given family of regressors F , the goal of training is to find parameters θθθ that
capture the relationship between context and consensus message pairs {(cd,md)}d=1...D
in some set of training examples.

Choice of Predictor Training Data

First we discuss how this training data is obtained. There can be at least three different
sources:

1. Beliefs at Convergence. Standard message passing inference is run in the model
for a large number of iterations until convergence and for a collection of different ob-
servations {xd}. Message passing is scheduled in precisely the same way as it would be
if CMP were present, however no consensus messages are sent. For each observation
xd , the collection of the marginals of the latent variables in the layer below the predictor
(hb

d = {hb
dk}, (see e.g. Fig. 4.1a) at the first iteration of message passing is considered to

be the context cd , and the marginal of the target variable t at the last iteration of message
passing is considered to be the oracle message md . The intuition is that during inference
on new problems, a predictor trained in this way would send messages that accelerate
convergence to the fixed-point that message passing would have reached by itself any-
way. This technique is only useful if standard message passing works but is slow.

2. Samples from the Model. First a collection of samples from the model is gener-
ated, giving us both the observation xd and its corresponding latent variables hd for each
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sample. Standard message passing inference is then run on the observations {xd} only
for a single iteration. Message passing is scheduled as before. For each observation xd ,
the marginals of the latent variables in the layer below hb

d at the first iteration of message
passing is the context cd , and the oracle message md is considered to be a point-mass
centered at the sampled value of the target variable t. The intuition is that during infer-
ence on new problems, a predictor trained in this way would send messages that guide
inference to a fixed-point in which the marginal of the target variable t is close to its
sampled value. This technique is useful if standard message passing fails to reach good
fixed points no matter how long it is run for.

3. Labelled Data. As above, except the latent variables of interest hd are set from
real data instead of being sampled from the model. The oracle message md is therefore a
point-mass centered at the label provided for the target variable t for observation Xd . The
aim is that during inference on new problems, a predictor trained in this way would send
messages that guide inference to a fixed-point in which the marginal of the target variable
t is close to its labelled value, even in the presence of a degree of model mismatch. We
demonstrate each of the strategies in the experiments in Section 4.4.

Random Regression Forests for CMP

Our goal is to learn a mapping F from contextual messages c to the consensus message
m from training data {(cd,md)}d=1...D. This is challenging since the inputs and outputs
of the regression problem are both messages (i.e. distributions), and special care needs to
be taken to account for this fact. We follow closely the methodology of [75], which use
random forests to predict outgoing messages from a factor given the incoming messages
to it. Please refer to Section 2.3.1 for a brief review of random forests.

In approximate message passing (e.g. EP [184] and VMP [267]), messages can be
represented using only a few numbers, e.g. a Gaussian message can be represented by its
natural parameters. We represent the contextual messages c collectively, in two different
ways: first as a concatenation of the parameters of its constituent messages which we
refer to as ‘regression parameterization’ and denote by rc; and second as a vector of
features computed on the set which we refer to as ‘tree parameterization’ and denote by
tc. This parametrization typically contains features of the set as a whole (e.g. moments of
their means). We represent the outgoing message m by a vector of real valued numbers
rm.

Prediction Model. Each leaf node is associated with a subset of the labelled training
data. During testing, a previously unseen set of contextual messages represented by
tc traverses the tree until it reaches a leaf which by construction is likely to contain
similar training examples. Therefore, we use the statistics of the data gathered in that
leaf to predict the consensus message with a multivariate regression model of the form:
rm = W · rc + ε where ε is a vector of normal error terms. We use the learned matrix of
coefficients W at test time to make predictions rm for a given rc. To recap, tc is used to
traverse the contextual messages down to leaves, and rc is used by a linear regressor to
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predict the parameters rm of the consensus message.
Training Objective Function. Recall the training procedure of random forests from

Section 2.3.1. Each node is in a tree represents a partition of feature space and split
function in each node is chosen in a greedy manner minimizing a splitting criterion E. A
common split criterion, which we also use here, is the sum of data likelihood in the node’s
left and right child clusters (see Eq. (2.14)). We use the ‘fit residual’ as defined in [75]
as the likelihood (model fit) function for optimizing splits at each node. In other words,
this objective function splits the training data at each node in a way that the relationship
between the incoming and outgoing messages is well captured by the regression model
in each child.

Ensemble Model. During testing, a set of contextual messages simultaneously tra-
verses every tree in the forest from their roots until it reaches their leaves. Combining
the predictions into a single forest prediction might be done by averaging the parameters
rt

m of the predicted messages mt by each tree t, however this would be sensitive to the
chosen parameterization for the messages. Instead we compute the moment average m
of the distributions {mt} by averaging the first few moments of the predictions across
trees, and solving for the distribution parameters which match the averaged moments
(see e.g. [105]).

4.4 Experiments
We first illustrate the application of CMP to two diagnostic models: one of circles and a
second of squares. We then use the approach to improve inference in a more challenging
vision model: intrinsic images of faces. In the first experiment, the predictors are trained
on beliefs at convergence, in the second on samples from the model, and in the third on
annotated labels, showcasing various use-cases of CMP. We show that in all cases, the
proposed technique leads to significantly more accurate inference results whilst preserv-
ing the computational efficiency of message passing. The experiments were performed
using Infer.NET [186] with default settings, unless stated otherwise. For random forest
predictors, we set the number of trees in each forest to 8.

4.4.1 A Generative Model of Circles
We begin by studying the behavior of standard message passing on a simplified Gauss
and Ceres problem [246]. Given a noisy sample of points x = {xi}i=1...N on a circle in
the 2D plane (Fig. 4.2a, black, N (0,0.01) noise on each axis), the aim is to infer the
coordinates of the circle’s center c (Fig. 4.2a, red) and its radius r. We can express the
data generation process using a graphical model (Fig. 4.2b). The Cartesian point (0,r)
is rotated ai radians to generate pi, then translated by c to generate the latent zi, which
finally produces the noisy observation xi. This model can be expressed in a few lines
of code in Infer.NET. The circle model is interesting for our purposes ,since it is both
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(a)

xi

zi

Gaussian

Sum c

pi

Circle
ai r

∆c

(b)

Figure 4.2: The circle problem. (a) Given a sample of points on a circle (black), we
wish to infer the circle’s center (red) and its radius. Two sets of samples are shown.
(b) The graphical model for this problem.

layered (the zis, pis and ais each form a layer) and loopy (due to the presence of two
variables outside the plate).

We use this example to highlight the fact that although inference may require many
iterations of message passing, message initialization can have a significant effect on the
speed of convergence, and to demonstrate how this can be done automatically using
CMP.

Vanilla message passing inference in this model can take a surprisingly large number
of iterations to converge. We draw 10 points {xi} from circles with random centers and
radii, run VMP and record the accuracy of the marginals of the latent variables at each
iteration. We repeat the experiment 50 times and plot results in Fig. 4.3 (dashed black).
As can be seen from the figure, the marginals contain significant errors even after 50
iterations of message passing.

We then experiment with consensus message passing. A predictor ∆c is trained to send
a consensus message to c in the initial stages of inference, given the messages coming
up from all of the zi (indicated graphically in Fig. 4.2b, red). The predictor is trained on
final beliefs at 100 iterations of standard message passing on D = 500 sample problems.

As can be seen in Fig. 4.3 (red), this single consensus message has the effect of sig-
nificantly increasing the rate of convergence (as indicated by slope) and also inference
robustness (as indicated by error bars). For comparison, we also plot how well a regres-
sor of the same capacity as the one used by CMP can directly estimate the latent variables
without using the graphical model in Fig. 4.3 (blue). Consensus message passing gives
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Figure 4.3: Accelerated inference using CMP for the circle problem. (a) Distance of
the mean of the marginal posterior of center c from its true value as a function of number
of inference iterations (Forest: direct prediction, MP: standard VMP, CMP: VMP with
consensus). Consensus message passing significantly accelerates convergence. (b) Sim-
ilar plot for radius r.

us the best of both worlds in this example: speed that is more comparable to one-shot
bottom-up prediction and the accuracy of message passing inference in a good model for
the problem.

4.4.2 A Generative Model of Squares

Next, we turn our attention to a more challenging problem for which even the best mes-
sage passing scheme that we could devise frequently finds completely inaccurate solu-
tions. The task is to infer the center c and side length r of a square in an image (Fig. 4.4a).
Unlike the previous problem where we knew that all points belonged to the circle, here
we must first determine which pixels belong to the square and which do not. To do so
we might also wish to reason about the color of the foreground fg and background bg,
making the task of inference significantly harder. The graphical model for this problem is
shown in Fig. 4.4b. Let c and l denote square center and side length respectively. At each
pixel position pi, si is a boolean variable indicating the square’s presence. Depending on
the value of si, the gate copies the appropriate color (fg or bg) to zi.

We experiment with 50 test images (themselves samples from the model), perform in-
ference using EP and with a sequential schedule, recording the accuracy of the marginals
of the latent variables at each iteration. We additionally place damping with step size
0.95 on messages from the square factor to the center c. We found these choices led
to the best performing standard message passing algorithm. Despite this, we observed
inference accuracy to be disappointingly poor (see Fig. 4.5). In Fig. 4.5a we see that, for
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(a)

xi

zi

Gaussian

Gate
fgbg

si

Square

c l

pi

∆fg∆bg

∆l

(b)

Figure 4.4: The square problem. (a) We wish to infer the square’s center and its side
length. (b) A graphical model for this problem. si is a boolean variable indicating the
square’s presence at position pi. Depending on the value of si, the gate copies the appro-
priate color (fg or bg) to zi.

many images, message passing converges to highly inaccurate marginals for the center.
The low quality of inference can also be seen in quantitative results of Figs. 4.5(b-d).

We implement CMP predictors at two different layers of the model (see Fig. 4.4b, red).
In the first layer, ∆fg and ∆bg send consensus messages to fg and bg respectively, given
the messages coming up from all of the zi which take the form of independent Gaussians
centered at the appearances of the observed pixels (we use a Gaussian noise model).
Therefore ∆fg and ∆bg effectively make initial guesses of the values of the foreground
and background colors in the image given the observed image. Split features in the
internal nodes of the regression forest are designed to test for equality of two randomly
chosen pixel positions, and sparse regressors are used at the leaves to prevent overfitting.

In the second layer, ∆l sends a consensus message to l given the messages coming
up from all of the si. The messages from si take the form of independent Bernoullis
indicating the algorithm’s current beliefs about the presence of the square at each pixel.
Therefore, the predictor’s job is to predict the square’s side length from this probabilistic
segmentation map. Note that it is much easier to implement a regressor to perform this
task (effectively one only needs to count) than it is to do so using the original observed
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Figure 4.5: Robustified inference using CMP for the square problem. (a) Position
of inferred centers relative to ground-truth. Image boundaries shown in blue for scale.
(b,c,d) Distance of the mean of the posterior of c, l and bg from their true values. CMP
consistently increases inference accuracy. Results have been averaged over 50 different
problems. 1 stage CMP only makes use of the lower predictors ∆fg and ∆bg.

image pixels xi. We find these predictors to be sufficient for stable inference and so we
do not implement a fourth predictor for c. We experiment with single stage CMP, where
only the lower predictors ∆fg and ∆bg are active, and with two stage CMP, where all three
predictors are active. The predictors are trained on D = 500 samples from the model.

The results of these experiments are shown in Fig. 4.5. We observe that CMP sig-
nificantly improves the accuracy of inference for the center c (Figs. 4.5a, 4.5b) but also
for the other latent variables (Figs. 4.5c, 4.5d). Note that single stage CMP appears to
be insufficient for guiding message passing to good solutions. Whereas in circle exam-
ple CMP accelerated convergence, this example demonstrates how it can make inference
possible in models that were outside the capabilities of standard message passing.
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Figure 4.6: The face problem. (a) We observe an image and wish to infer the corre-
sponding reflectance map and normal map (visualized here as 3D shape). (b) A graphical
model for this problem. Symmetry priors not shown.

4.4.3 A Generative Model of Faces

In this sectin, we also investigate a more realistic application: face modeling. The esti-
mation of reflectance and shape from a single image of a human face is a well-studied
problem in computer vision (see e.g. [94, 161, 264, 140, 244]). A primary motivation for
this task is that reflectance and shape are invariant to confounding light effects, and are
therefore useful for downstream tasks such as recognition. The problem is ill-posed and
modern approaches make use of prior knowledge in order to obtain good solutions, e.g.
in the form of average reflectance and normal statistics [27, 28] or morphable 3D models
[278, 264].

Model. Given an observation of image pixels x = {xi}, the aim is to infer the re-
flectance value ri and normal vector ni for each pixel i (see Fig. 4.6a). In Fig. 4.6b, a
model is shown for these variables that represents the following image formation process:
xi = (ni · l)× ri + ε , thereby assuming Lambertian reflection and an infinitely distant di-
rectional light source with variable intensity. We place Gaussian priors over reflectances
{ri}, normals {ni}, and the light l; and set the parameters of the priors using training
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(a) Observed (b) Reflectance (c) Variance (d) Light (e) Normal︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

‘GT’ BU MP Forest CMP CMP ‘GT’ MP Forest CMP ‘GT’ MP CMP

Figure 4.7: A visual comparison of inference results for the face problem. For 4 ran-
domly chosen test images, we show inference results obtained by competing methods.
(a) Observed images. (b) Inferred reflectance maps. GT is the stereo estimate which we
use as a proxy for ground-truth, BU is the bottom-up reflectance estimate of Biswas et al.
(2009), MP refers to standard variational message passing, Forest is the consensus pre-
diction and CMP is the proposed consensus message passing technique. (c) The variance
of the inferred reflectance estimate produced by CMP (normalized across rows). High
variance regions correlate strongly with cast shadows. (d) Visualization of inferred light.
(e) Inferred normal maps.

data. We additionally place a soft symmetry prior on the {ri} (the reflectance value on
one side of the face should be close to its value on the other side) and on the {ni} (normal
vectors on each side should be approximately symmetric), reflecting our prior knowledge
about faces. These symmetry priors can be added to the model in just a few lines of code,
illustrating the way in which model-based methods lend themselves to rapid prototyping
and experimentation.

Although this model is only a crude approximation to the true image formation process
(e.g. it does not account for shadows or specularities), similar approximations have been
found to be useful in prior work [27, 28, 140]. Additionally, if we can successfully
develop algorithms that perform accurate and reliable inference in this class of models,
we would then be able to increase its usefulness by updating it to reflect the true image
formation process more accurately. Note that even for a relatively small image of size
96× 84, the model contains over 48,000 latent variables and 56,000 factors, and as we
will show below, standard message passing in the model routinely fails to converge to
accurate solutions.

Consensus Message Passing. We use predictors at two levels in the model (see
Fig. 4.6b) to tackle this problem. The first sends consensus messages to each reflectance
pixel ri, making it an instance of type B of CMP as described in Fig. 4.1b. Here, each
consensus message is predicted using information from all the contextual messages from
the zi. We denote each of these predictors by ∆r

i . The second predictor sends a consensus
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Observed ‘GT’ BU MP Forest CMP Variance

Figure 4.8: Robustness to varying illumination. Left to right: observed image, pho-
tometric stereo estimate (proxy for ground-truth), [27] estimate, VMP result, consensus
forest estimate, CMP mean, and CMP variance.

message to l using information from all the messages from the si and is denoted by ∆l.
The first level of predictors effectively make a guess of the reflectance image from the
denoised observation, and the second layer predictor produces an estimate of the light
from the shading image (which is likely to be easier to do than directly from the observa-
tion). The reflectance predictors {∆r

i } are all powered by a single random forest, however
the pixel position i is used as a feature that it can exploit to create location specific be-
haviour. The tree parameterization of the contextual messages c for use in the reflectance
predictor ∆r

i also includes 16 features such as mean, median, max, min and gradients of a
21×21 patch around the pixel. The tree parameterization of the contextual messages for
use in the lighting predictor ∆l consists of means of the mean of the shading messages in
12×12 blocks. We deliberately use simple features to maintain generality but one could
imagine the use of more specialized regressors for maximal performance.

Datasets. We experiment with the ‘Yale B’ and ‘Extended Yale B’ datasets [94, 161].
Together, they contain images of 38 subjects each with 64 illumination directions. We
remove images taken with extreme light angles (azimuth or elevation ≥ 85 degrees) that
are almost entirely in shadow, leaving around 45 images for each subject. Images are
down-sampled to 96× 84. There are no ground-truth normals or reflectances for this
dataset, however it is common practice to create proxy ground-truths using photometric
stereo, which we obtain using the code of [205]. We use images from 22 subjects for
training and test on the remaining 16 subjects.

Results. We begin by qualitatively assessing the different inference schemes. In
Fig. 4.7 we show inference results for reflectance maps, normal maps and lights that
are obtained after 100 iterations of message passing (VMP). For reflectance (Fig. 4.7b),
we would like inference to produce estimates that match closely the ground-truth pro-
duced by photometric stereo (GT). We also display the reflectance estimates produced
by the strong baseline (BU) of [27] for reference. We note that the baseline achieves
excellent accuracy in regions with strong lighting, however it produces blurry estimates
in regions under shadow.
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Figure 4.9: Reflectance inference accuracy demonstrated through recognition accu-
racy. CMP allows us to make use of the full potential of the generative model, thereby
outperforming the competitive bottom-up method of [27].
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Figure 4.10: Light inference accuracy. The presence of cast shadows makes the direct
prediction task easier, however CMP is accurate even in their absence.

As can be seen in Fig. 4.7b (MP), standard variational message passing finds solutions
that are highly inaccurate with continued presence of illumination and artifacts in areas
of cast show. In contrast, inference using CMP produces artefact-free results that much
more closely resemble the stereo ground-truths. Arguably CMP also improves over the
baseline [27], since its estimates are not blurry in regions with cast shadows. This can
be attributed to the presence of symmetry priors in the model. Additionally, we note that
the variance of the CMP inference for reflectance (Fig. 4.7c) correlates strongly with
cast shadows in the observed images (i.e. the model is uncertain where it should be)
suggesting that in future work it would be fruitful to have the notion of cast shadows
explicitly built into the model. Figs. 4.7d and 4.7e show analogous results for lighting
and normal maps, and Fig. 4.8 demonstrates CMP’s ability to robustly infer reflectance
maps for images of a single subject taken under varying lighting conditions. More visual
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results are shown in the supplementary at the end of this thesis (Figs. A.7, 4.8).
We use the task of subject recognition (using estimated reflectance) as a quantitative

measure of inference accuracy, as it can be difficult to measure in more direct ways (e.g.
RMSE strongly favors blurry predictions). The reflectance estimate produced by each
algorithm is compared to all training subjects’ ground-truth reflectances and is assigned
the label of its closest match. We have found this evaluation to reflect the quality of in-
ference estimates. Fig. 4.9 shows the result of this experiment, both for real images and
also synthetic images that were produced by taking the stereo ground-truths and adding
artificial lighting (but with no cast shadows). We show analogous results for light in
Fig. 4.10, where error is defined to be the cosine angle distance between the estimated
light and the photometric stereo reference. First, we note that standard variational mes-
sage passing (MP) performs poorly, producing reflectance estimates that are much less
useful for recognition than those from [27]. Second, we note that CMP in the same
model (both 1 stage and 2 stage versions) produces inferences that are significantly more
useful downstream. The horizontal line labelled ‘Forest’ represents the accuracy of the
consensus messages without any message passing, showing that the model-based fine-
tuning provides a significant benefit. Finally, we highlight the fact that initializing light
directly from the image and running message passing (Fig. 4.9, Init+MP) leads to worse
estimates than CMP demonstrating the use of layered predictions as opposed to direct
predictions from the observations. These results demonstrate that CMP helps message
passing find better fixed points even in the presence of model mis-match (shadows) and
make use of the full potential of the generative model.

4.5 Discussion and Conclusions
We have presented Consensus Message Passing and shown that it is a computationally
efficient technique that can be used to improve the accuracy of message passing inference
in a variety of vision models. The crux of the approach is to recognize the importance
of global variables, and to take advantage of layered model structures commonly seen in
vision to make rough estimates of their values.

The success of CMP depends on the accuracy of the random forest predictors. The
design of forest features is not yet completely automated, but we took care in this work
to use generic features that can be applied to a broad class of problems. Our forests are
implemented in an extensible manner, and we envisage building a library of them that
one can choose from, simply by inspecting the data types of the contextual and target
variables.

In future work, we would like to exploit the benefits of the CMP framework by ap-
plying it to more challenging problems from computer vision. Each of the examples in
Section 4.4 can be extended in various ways, e.g. by making considerations for multiple
objects, incorporating occlusion in the squares example and cast shadows in the faces
example, or by developing more realistic priors. We are also seeking to understand in
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what other domains the application of our ideas may be fruitful.
More broadly, a major challenge in machine learning is that of enriching models in

a scalable way. We continually seek to ask our models to provide interpretations of
increasingly complicated, heterogeneous data sources. Graphical models provide an ap-
pealing framework to manage this complexity, but the difficulty of inference has long
been a barrier to achieving these goals. The CMP framework takes us one step in the
direction of overcoming this barrier.
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Inference in Discriminative Vision
Models
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Chapter 5

Learning Sparse High Dimensional
Filters

In the Part-II of this thesis, we focus on inference in discriminative CNN models. Since
inference amounts to simple evaluation of the model in discriminative models, we pro-
pose modifications to the original model itself for better inference. This is unlike the
inference strategies proposed in Part-I of this thesis, where we proposed to learn a sepa-
rate inference model that helps in the Bayesian inference of a given generative model. In
this chapter, we propose a learning technique for general sparse high-dimensional filters
and show how this can be used for generalizing standard spatial convolutions in CNNs
to learnable bilateral convolutions with long-range image-adaptive connections.

Bilateral filters have wide spread use due to their edge-preserving properties. The com-
mon use case is to manually choose a parametric filter type, usually a Gaussian filter. In
this chapter, we will generalize the parametrization and in particular derive a gradient de-
scent algorithm so the filter parameters can be learned from data. This derivation allows
to learn high dimensional linear filters that operate in sparsely populated feature spaces.
We build on the permutohedral lattice construction for efficient filtering. The ability to
learn more general forms of high-dimensional filters can be used in several diverse appli-
cations. First, we demonstrate the use in applications where single filter applications are
desired for runtime reasons. Further, we show how this algorithm can be used to learn
the pairwise potentials in densely connected conditional random fields and apply these
to different image segmentation tasks. Finally, we introduce layers of bilateral filters in
CNNs and propose bilateral neural networks for the use of high-dimensional sparse data.
This view provides new ways to encode model structure into network architectures. A
diverse set of experiments empirically validates the usage of general forms of filters.

5.1 Introduction

Image convolutions are basic operations for many image processing and computer vision
applications. In this chapter, we will study the class of bilateral filter convolutions and
propose a general image adaptive convolution that can be learned from data.
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The bilateral filter [15, 234, 251] was originally introduced for the task of image de-
noising as an edge preserving filter. Since the bilateral filter contains the spatial convo-
lution as a special case, in the following, we will directly state the general case. Given
an image x = (x1, . . . ,xn),xi ∈ Rc with n pixels and c channels, and for every pixel i, a
d dimensional feature vector fi ∈ Rd (e.g. the (x,y) position in the image fi = (xi,yi)

>).
The bilateral filter then computes

x′i =
n

∑
j=1

wfi,f jx j. (5.1)

for all i. Almost the entire literature refers to the bilateral filter as a synonym of the
Gaussian parametric form wfi,f j = exp(−1

2(fi− f j)
>Σ−1(fi− f j)). The features fi are

most commonly chosen to be position (xi,yi) and color (ri,gi,bi) or pixel intensity. To
appreciate the edge-preserving effect of the bilateral filter, consider the five-dimensional
feature f = (x,y,r,g,b)>. Two pixels i, j have a strong influence wfi,f j on each other only
if they are close in position and color. At edges, the color changes, therefore pixels lying
on opposite sides have low influence and thus this filter does not blur across edges. This
behavior is sometimes referred to as image adaptive, since the filter has a different shape
when evaluated at different locations in the image. More precisely, it is the projection of
the filter to the two-dimensional image plane that changes, the filter values wf,f′ do not
change. The filter itself can be of c dimensions wfi,f j ∈ Rc, in which case the multipli-
cation in Eq. (5.1) becomes an inner product. For the Gaussian case, the filter can be
applied independently per channel. For an excellent review of image filtering, we refer
to [183].

The filter operation of Eq. (5.1) is a sparse high-dimensional convolution, a view ad-
vocated in [19, 199]. An image x is not sparse in the spatial domain, we observe pixels
values for all locations (x,y). However, when pixels are understood in a higher dimen-
sional feature space, e.g. (x,y,r,g,b), the image becomes a sparse signal, since the r,g,b
values lie scattered in this five-dimensional space. This view on filtering is the key dif-
ference of the bilateral filter compared to the common spatial convolution. An image
edge is not visible for a filter in the spatial domain alone, whereas in the 5D space it is.
The edge-preserving behavior is possible due to the higher dimensional operation. Other
data can naturally be understood as sparse signals, e.g. 3D surface points.

The main contribution of this work is to propose a general and learnable sparse high
dimensional convolution. Our technique builds on efficient algorithms that have been
developed to approximate the Gaussian bilateral filter and re-uses them for more gen-
eral high-dimensional filter operations. Due to its practical importance (see related work
in Section 5.2), several efficient algorithms for computing Eq. (5.1) have been devel-
oped, including the bilateral grid [199], Gaussian KD-trees [8], and the permutohedral
lattice [7]. The design goal for these algorithms was to provide a) fast runtimes and b)
small approximation errors for the Gaussian filter case. The key insight of this work is to
use the permutohedral lattice and use it not as an approximation of a predefined kernel
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but to freely parametrize its values. We relax the separable Gaussian filter case from [7]
and show how to compute gradients of the convolution (Section 5.3) in lattice space.
This enables learning the filter from data.

This insight has several useful consequences. We discuss applications where the bi-
lateral filter has been used before: image filtering (Section 5.4) and CRF inference (Sec-
tion 5.5). Further we will demonstrate how the free parametrization of the filters enables
us to use them in deep convolutional neural networks (CNN) and allow convolutions that
go beyond the regular spatially connected receptive fields (Section 5.6). For all domains,
we present various empirical evaluations with a wide range of applications.

5.2 Related Work
We categorize the related work according to the three different generalizations of this
work.

Image Adaptive Filtering: The literature in this area is rich and we can only provide
a brief overview. Important classes of image adaptive filters include the bilateral fil-
ters [15, 251, 234], non-local means [43, 16], locally adaptive regressive kernels [243],
guided image filters [109] and propagation filters [49]. The kernel least-squares regres-
sion problem can serve as a unified view of many of them [183]. In contrast to the present
work that learns the filter kernel using supervised learning, all these filtering schemes use
a predefined kernel. Because of the importance of bilateral filtering to many applications
in image processing, much effort has been devoted to derive fast algorithms; most no-
tably [199, 7, 8, 92]. Surprisingly, the only attempt to learn the bilateral filter we found
is [122] that casts the learning problem in the spatial domain by rearranging pixels. How-
ever, the learned filter does not necessarily obey the full region of influence of a pixel
as in the case of a bilateral filter. The bilateral filter also has been proposed to regular-
ize a large set of applications in [21, 20] and the respective optimization problems are
parametrized in a bilateral space. In these works the filters are part of a learning system
but unlike this work restricted to be Gaussian.

Dense CRF: The key observation of [151] is that mean-field inference update steps
in densely connected CRFs with Gaussian edge potentials require Gaussian bilateral
filtering operations. This enables tractable inference through the application of a fast
filter implementation from [7]. This quickly found wide-spread use, e.g. the combi-
nation of CNNs with a dense CRF is among the best performing segmentation mod-
els [52, 279, 25]. These works combine structured prediction frameworks on top of
CNNs, to model the relationship between the desired output variables thereby signifi-
cantly improving upon the CNN result. Bilateral neural networks, that are presented in
this work, provide a principled framework for encoding the output relationship, using the
feature transformation inside the network itself thereby alleviating some of the need for
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later processing. Several works [150, 69, 142, 279, 220] demonstrate how to learn free
parameters of the dense CRF model. However, the parametric form of the pairwise term
always remains a Gaussian. Campbell et al. [47] embed complex pixel dependencies into
an Euclidean space and use a Gaussian filter for pairwise connections. This embedding is
a pre-processing step and can not directly be learned. In Section 5.5 we will discuss how
to learn the pairwise potentials, while retaining the efficient inference strategy of [151].

Neural Networks: In recent years, the use of CNNs enabled tremendous progress in a
wide range of computer vision applications. Most CNN architectures use spatial convo-
lution layers, which have fixed local receptive fields. This work suggests to replace these
layers with bilateral filters, which have a varying spatial receptive field depending on the
image content. The equivalent representation of the filter in a higher dimensional space
leads to sparse samples that are handled by a permutohedral lattice data structure. Sim-
ilarly, Bruna et al. [42] propose convolutions on irregularly sampled data. Their graph
construction is closely related to the high-dimensional convolution that we propose and
defines weights on local neighborhoods of nodes. However, the structure of the graph
is bound to be fixed and it is not straightforward to add new samples. Furthermore, re-
using the same filter among neighborhoods is only possible with their costly spectral
construction. Both cases are handled naturally by our sparse convolution. Jaderberg
et al. [128] propose a spatial transformation of signals within the neural network to learn
invariances for a given task. The work of [126] propose matrix back-propagation tech-
niques which can be used to build specialized structural layers such as normalized-cuts.
Graham et al. [101] propose extensions from 2D CNNs to 3D sparse signals. Our work
enables sparse 3D filtering as a special case, since we use an algorithm that allows for
even higher dimensional data.

5.3 Learning Sparse High Dimensional Filters

In this section, we describe the main technical contribution of this work, we generalize
the permutohedral convolution [7] and show how the filter can be learned from data.

Recall the form of the bilateral convolution from Eq. (5.1). A naive implementation
would compute for every pixel i all associated filter values wfi,f j and perform the sum-
mation independently. The view of w as a linear filter in a higher dimensional space,
as proposed by [199], opened the way for new algorithms. Here, we will build on the
permutohedral lattice convolution developed in Adams et al. [7] for approximate Gaus-
sian filtering. The most common application of bilateral filters use photometric features
(XYRGB). We chose the permutohedral lattice as it is particularly designed for this di-
mensionality, see Fig. 7 in [7] for a speed comparison.
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Splat Convolve

Gauss Filter

Slice

Figure 5.1: Schematic of the permutohedral convolution. Left: splatting the input
points (orange) onto the lattice corners (black); Middle: The extent of a filter on the
lattice with a s = 2 neighborhood (white circles), for reference we show a Gaussian
filter, with its values color coded. The general case has a free scalar/vector parameter
per circle. Right: The result of the convolution at the lattice corners (black) is projected
back to the output points (blue). Note that in general the output and input points may be
different.

5.3.1 Permutohedral Lattice Convolutions

We first review the permutohedral lattice convolution for Gaussian bilateral filters from
Adams et al. [7] and describe its most general case.

As before, we assume that every image pixel i is associated with a d-dimensional fea-
ture vector fi. Gaussian bilateral filtering using a permutohedral lattice approximation
involves 3 steps. We begin with an overview of the algorithm, then discuss each step in
more detail in the next paragraphs. Figure 5.1 schematically shows the three operations
for 2D features. First, interpolate the image signal on the d-dimensional grid plane of
the permutohedral lattice, which is called splatting. A permutohedral lattice is the tes-
sellation of space into permutohedral simplices. We refer to [7] for details of the lattice
construction and its properties. In Fig. 5.2, we visualize the permutohedral lattice in the
image plane, where every simplex cell receives a different color. All pixels of the same
lattice cell have the same color. Second, convolve the signal on the lattice. And third,
retrieve the result by interpolating the signal at the original d-dimensional feature loca-
tions, called slicing. For example, if the features used are a combination of position and
color fi = (xi,yi,ri,gi,bi)

>, the input signal is mapped into the 5D cross product space of
position and color and then convolved with a 5D tensor. Afterwards, the filtered result is
mapped back to the original space. In practice we use a feature scaling Λf with a diagonal
matrix Λ and use separate scales for position and color features. The scale determines the
distance of points and thus the size of the lattice cells. More formally, the computation is
written by x′ = SsliceBSsplatx and all involved matrices are defined below. For notational
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(a) Sample Image (b) Position (c) Color (d) Position, Color

Figure 5.2: Visualization of the permutohedral lattice. (a) Input image; Lattice vi-
sualizations for different feature spaces: (b) 2D position features: 0.01(x,y), (c) color
features: 0.01(r,g,b) and (d) position and color features: 0.01(x,y,r,g,b). All pixels
falling in the same simplex cell are shown with the same color.

convenience we will assume scalar input signals xi, the vector valued case is analogous,
the lattice convolution changes from scalar multiplications to inner products.

Splat: The splat operation (cf. left-most image in Fig. 5.1) finds the enclosing simplex
in O(d2) on the lattice of a given pixel feature fi and distributes its value vi onto the
corners of the simplex. How strong a pixel contributes to a corner j is defined by its
barycentric coordinate ti, j ∈R inside the simplex. Thus, the value ` j ∈R at a lattice point
j is computed by summing over all enclosed input points; more precisely, we define an
index set Ji for a pixel i, which contains all the lattice points j of the enclosing simplex

`= Ssplatx;(Ssplat) j,i = ti, j, if j ∈ Ji, otherwise 0. (5.2)

Convolve: The permutohedral convolution is defined on the lattice neighborhood Ns( j)
of lattice point j, e.g. only s grid hops away. More formally

`′ = B`;(B) j′, j = w j, j′, if j′ ∈ Ns( j), otherwise 0. (5.3)

An illustration of a two-dimensional permutohedral filter is shown in Fig. 5.1 (middle).
Note that we already presented the convolution in the general form that we will make use
of. The work of [7] chooses the filter weights such that the resulting operation approxi-
mates a Gaussian blur, which is illustrated in Fig. 5.1. Further, the algorithm of [7] takes
advantage of the separability of the Gaussian kernel. Since we are interested in the most
general case, we extended the convolution to include non-separable filters B.

Slice: The slice operation (cf. right-most image in Fig. 5.1) computes an output value
x′i′ for an output pixel i′ again based on its barycentric coordinates ti, j and sums over the
corner points j of its lattice simplex

x′ = Sslice`
′;(Sslice)i, j = ti, j, if j ∈ Ji, otherwise 0 (5.4)
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The splat and slice operations take a role of an interpolation between the different
signal representations: the irregular and sparse distribution of pixels with their associated
feature vectors and the regular structure of the permutohedral lattice points. Since high-
dimensional spaces are usually sparse, performing the convolution densely on all lattice
points is inefficient. So, for speed reasons, we keep track of the populated lattice points
using a hash table and only convolve at those locations.

5.3.2 Learning Permutohedral Filters

The fixed set of filter weights w from [7] in Eq. (5.3) is designed to approximate a Gaus-
sian filter. However, the convolution kernel w can naturally be understood as a general
filtering operation in the permutohedral lattice space with free parameters. In the exposi-
tion above we already presented this general case. As we will show in more detail later,
this modification has non-trivial consequences for bilateral filters, CNNs and probabilis-
tic graphical models.

The size of the neighborhood Ns(k) for the blur in Eq. (5.3) compares to the filter
size of a spatial convolution. The filtering kernel of a common spatial convolution that
considers s points to either side in all dimensions has (2s+1)d ∈ O(sd) parameters. A
comparable filter on the permutohedral lattice with an s neighborhood is specified by
(s+1)d+1− sd+1 ∈ O(sd) elements (cf. Appendix A.3.1). Thus, both share the same
asymptotic size.

By computing the gradients of the filter elements, we enable the use of gradient based
optimizers, e.g. back-propagation for CNN in the same way that spatial filters in a CNN
are learned. The gradients with respect to x and the filter weights in B of a scalar loss L
are:

∂L
∂x

= S′splatB
′S′slice

∂L
∂x′

, (5.5)

∂L
∂ (B)i, j

=

(
S′slice

∂L
∂x

)

i
(Ssplatx) j. (5.6)

Both gradients are needed during back-propagation and in experiments, we use stochas-
tic back-propagation for learning the filter kernel. The permutohedral lattice convolu-
tion is parallelizable, and scales linearly with the filter size. Specialized implementa-
tions run at interactive speeds in image processing applications [7]. Our implemen-
tation in the Caffe deep learning framework [136] allows arbitrary filter parameters
and the computation of the gradients on both CPU and GPU. The code is available at
http://bilateralnn.is.tuebingen.mpg.de.
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(a) Input (b) Guidance (c) Ground Truth (d) Bicubic (e) Gauss-BF (f) Learned-BF

Figure 5.3: Guided up-sampling. Color (top) and depth (bottom) 8× up-sampling re-
sults using different methods: Bicubic - Bicubic interpolation; Gauss-BF - Gaussian bi-
lateral upsampling; Learned-BF - Learned bialteral up-sampling (best viewed on screen).

5.4 Single Bilateral Filter Applications
In this section, we will consider the problems of joint bilateral up-sampling [148] and
3D body mesh denoising as prominent instances of single bilateral filter applications.
See [200] for a recent overview of other bilateral filter applications. Further experiments
on image denoising are included in Appendix A.3, together with details about exact
experimental protocols and more visualizations.

5.4.1 Joint Bilateral Upsampling
A typical technique to speed up computer vision algorithms is to compute results on a
lower scale and up-sample the result to the full resolution. This up-sampling step may
use the original resolution image as a guidance image. A joint bilateral up-sampling
approach for this problem setting was developed in [148]. We describe the procedure for
the example of up-sampling a color image. Given a high resolution gray scale image (the
guidance image) and the same image on a lower resolution but with colors, the task is
to up-sample the color image to the same resolution as the guidance image. Using the
permutohedral lattice, joint bilateral up-sampling proceeds by splatting the color image
into the lattice, using 2D position and 1D intensity as features and the 3D RGB values as
the signal. A convolution is applied in the lattice and the result is read out at the features
of the high resolution image, that is using the 2D position and intensity of the guidance
image. The possibility of reading out (slicing) points that are not necessarily the input
points is an appealing feature of the permutohedral lattice convolution.

Color Up-sampling

For the task of color up-sampling, we compare the Gaussian bilateral filter [148] against a
learned generalized filter. We experimented with two different datasets: Pascal VOC2012
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Upsampling factor Bicubic Gaussian Learned

Color Upsampling (PSNR)
2x 24.19 / 30.59 33.46 / 37.93 34.05 / 38.74
4x 20.34 / 25.28 31.87 / 35.66 32.28 / 36.38
8x 17.99 / 22.12 30.51 / 33.92 30.81 / 34.41
16x 16.10 / 19.80 29.19 / 32.24 29.52 / 32.75

Depth Upsampling (RMSE)
8x 0.753 0.753 0.748

Table 5.1: Joint bilateral up-sampling. (top) PSNR values corresponding to various
up-sampling factors and up-sampling strategies on the test images of the Pascal VOC12
segmentation / high-resolution 2MP dataset; (bottom) RMSE error values corresponding
to up-sampling depth images estimated using [72] computed on the test images from the
NYU depth dataset [231].

Test Factor

2× 4× 8× 16×

Tr
ai

n
Fa

ct
or 2× 38.45 36.12 34.06 32.43

4× 38.40 36.16 34.08 32.47

8× 38.40 36.15 34.08 32.47

16× 38.26 36.13 34.06 32.49

Table 5.2: Color upsampling with different train and test up-sampling factors.
PSNR values corresponding to different up-sampling factors used at train and test times
on the 2 megapixel image dataset, using our learned bilateral filters.

segmentation [77] using train, validation and test splits, and 200 higher resolution (2MP)
images from Google image search [3] with 100 train, 50 validation and 50 test images.
For training, we use the mean squared error (MSE) criterion and perform stochastic
gradient descent with a momentum term of 0.9, and weight decay of 0.0005, found
using the validation set. In Table 5.1 we report result in terms of Peak-Signal-to-Noise
ratio (PSNR) for the up-sampling factors 2×,4×,8× and 16×. We compare a standard
bicubic interpolation, that does not use a guidance image, the Gaussian bilateral filter
case (with feature scales optimized on the validation set), and the learned filter. All filters
have the same support. For all up-sampling factors, joint bilateral Gaussian up-sampling
outperforms bicubic interpolation and is in turn improved using a learned filter. A result
of the up-sampling is shown in Fig. 5.3 and more results are included in Section A.3.3.
The learned filter recovers finer details in the images.

We also performed the cross-factor analysis of training and testing at different up-
sampling factors. Table 5.2 shows the PSNR results for this analysis. Although, in terms
of PSNR, it is optimal to train and test at the same up-sampling factor, the differences
are small when training and testing up-sampling factors are different.
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Depth Up-sampling

We experimented with depth up-sampling as another joint up-sampling task. We use
the dataset of [231] that comes with pre-defined train, validation and test splits. The
approach of [72] is a CNN model that produces a result at 1/4th of the input resolu-
tion due to down-sampling operations in max-pooling layers. Furthermore, the authors
down-sample the 640× 480 images to 320× 240 as a pre-processing step before CNN
convolutions. The final depth result is bicubic interpolated to the original resolution. It is
this interpolation that we replace with a Gaussian and learned joint bilateral up-sampling.
The features are five-dimensional position and color information from the high resolu-
tion input image. The filter is learned using the same protocol as for color up-sampling
minimizing MSE prediction error. The quantitative results are shown in Table 5.1, the
Gaussian filter performs equal to the bicubic interpolation, the learned filter is better.
Qualitative results are shown in Fig 5.3, both joint bilateral up-sampling respect image
edges in the result. For this [80] and other tasks specialized interpolation algorithms ex-
ist, e.g. deconvolution networks [276]. Part of future work is to equip these approaches
with bilateral filters. More qualitative results are presented in Appendix A.3.3.

Figure 5.4: Sample data for 3D mesh denoising. (top) Some 3D body meshes sampled
from [177] and (bottom) the corresponding noisy meshes used in denoising experiments.
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Figure 5.5: 4D isomap features for 3D human bodies. Visualization of 4D isomap
features for a sample 3D mesh. Isomap feature values are overlaid onto mesh vertices.

5.4.2 3D Mesh Denoising

Permutohedral convolutions can naturally be extended to higher (> 2) dimensional data.
To highlight this, we use the proposed convolution for the task of denoising 3D meshes.

We sample 3D human body meshes using a generative 3D body model from [177]. To
the clean meshes, we add Gaussian random noise displacements along the surface normal
at each vertex location. Figure 5.4 shows some sample 3D meshes sampled from [177]
and corresponding noisy meshes. The task is to take the noisy meshes as inputs and
recover the original 3D body meshes. We create 1000 training, 200 validation and an-
other 500 testing examples for the experiments. Although we use synthetically generated
meshes and noise for our experiments for the sake of training, our technique could be po-
tentially used for denoising the noisy meshes arising from 3D scanning devices.

Mesh Representation: The 3D human body meshes from [177] are represented with
3D vertex locations and the edge connections between the vertices. We found that this
signal representation using global 3D coordinates is not suitable for denoising with bilat-
eral filtering. Therefore, we first smooth the noisy mesh using mean smoothing applied to
the face normals [271] and represent the noisy mesh vertices as 3D vector displacements
with respect to the corresponding smoothed mesh. Thus, the task becomes denoising the
3D vector displacements with respect to the smoothed mesh.

Isomap Features: To apply permutohedral convolution, we need to define features at
each input vertex point. We use a 4 dimensional isomap embedding [248] of the given
3D mesh graph as features. The given 3D mesh is converted into a weighted edge graph
with edge weights set to the Euclidean distance between the connected vertices and to in-
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Noisy Mesh
Normal

Smoothing
Gauss

Bilateral
Learned
Bilateral

Vertex Distance (RMSE) 5.774 3.183 2.872 2.825
Normal Angle Error 19.680 19.707 19.357 19.207

Table 5.3: Body denoising. Vertex distance RMSE values and normal angle error (in
degrees) corresponding to different denoising strategies averaged over 500 test meshes.

Figure 5.6: Sample denoising result. Ground truth mesh (left), corresponding given
noisy mesh (middle) and the denoised result (right) using the learned bilateral filter.

finity between the non-connected vertices. Then the 4 dimensional isomap embedding is
computed for this weighted edge graph using a publicly available implementation [247].
Figure 5.5 shows the visualization of isomap features on a sample 3D mesh.

Experimental Results: Mesh denoising with a bilateral filter proceeds by splatting
the input 3D mesh vectors (displacements with respect to the smoothed mesh) into the
4D isomap feature space, filtering the signal in this 4D space and then slicing back into
original 3D input space. The Table 5.3 shows quantitative results as RMSE for different
denoising strategies. The normal smoothing [271] already reduces the RMSE. The Gauss
bilateral filter results in significant improvement over normal smoothing and learning the
filter weights again improves the result. A visual result is shown in Fig. 5.6.
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5.5 Learning Pairwise Potentials in Dense CRFs
The bilateral convolution from Section 5.3 generalizes the class of DenseCRF models for
which the mean-field inference from [151] applies. The DenseCRF models have found
wide-spread use in various computer vision applications [239, 24, 279, 259, 258, 25].
Recall from Section 2.2.2, for a DenseCRF model with unary potentials ψu and pairwise
potentials ψ

i j
p , the mean-field inference results in a fixed point equation which can be

solved iteratively to update the marginal distributions Qi. In iteration t, we have:

Qt+1
i (xi) =

1
Zi

exp{−ψu(xi)−∑
l∈L

∑
j 6=i

ψ
i j
p (xi, l)Qt

j(l)

︸ ︷︷ ︸
bilateral filtering

}. (5.7)

Thus bilateral filtering is used for fast mean-field inference in DenseCRF models. One
of the fundamental limitations with the existing use of DenseCRFs is the confinement of
pairwise potentials ψ

i j
p (yi,y j) to be Gaussian as bilateral filtering is traditionally applied

with Gaussian kernel.

5.5.1 Learning Pairwise Potentials

The proposed bilateral convolution generalizes the class of potential functions ψ
i j
p , since

they allow a richer class of kernels k(fi, f j) that furthermore can be learned from data. So
far, all dense CRF models have used Gaussian potential functions k, we replace it with
the general bilateral convolution and learn the parameters of kernel k, thus in effect learn
the pairwise potentials of the dense CRF. This retains the desirable properties of this
model class – efficient inference through mean-field and the feature dependency of the
pairwise potential. In order to learn the form of the pairwise potentials k we make use of
the gradients for filter parameters in k and use back-propagation through the mean-field
iterations [69, 169] to learn them.

The work of [150] derived gradients to learn the feature scaling Λ but not the form of
the kernel k, which still was Gaussian. In [47], the features fi were derived using a non-
parametric embedding into a Euclidean space and again a Gaussian kernel was used. The
computation of the embedding was a pre-processing step, not integrated in a end-to-end
learning framework. Both aforementioned works are generalizations that are orthogonal
to our development and can be used in conjunction.

5.5.2 Experimental Evaluation
We evaluate the effect of learning more general forms of potential functions on two pixel
labeling tasks, semantic segmentation of VOC data [77] and material classification [25].
We use pre-trained models from the literature and compare the relative change when
learning the pairwise potentials, as in the last section. For both the experiments, we use

85



Chapter 5 Learning Sparse High Dimensional Filters

(a) Input (b) Ground Truth (c) CNN (d) +looseMF

Figure 5.7: Segmentation results. An example result for semantic (top) and material
(bottom) segmentation. (c) depicts the unary results before application of MF, (d) after
two steps of loose-MF with a learned CRF. More examples with comparisons to Gaussian
pairwise potentials can be found in the supplementary material.

multinomial logistic classification loss and learn the filters via back-propagation [69].
This has also been understood as recurrent neural network variants [279], the following
experiments demonstrate the learnability of bilateral filters.

Semantic Segmentation

Semantic segmentation is the task of assigning a semantic label to every pixel. We choose
the DeepLab network [52], a variant of the VGGnet [232] for obtaining unaries. The
DeepLab architecture runs a CNN model on the input image to obtain a result that is
down-sampled by a factor of 8. The result is then bilinear interpolated to the desired
resolution and serves as unaries ψu(xi) in a dense CRF. We use the same Pott’s label
compatibility function µ , and also use two kernels k1(fi, f j)+ k2(pi, p j) with the same
features fi = (xi,yi,ri,gi,bi)

> and pi = (xi,yi)
> as in [52]. Thus, the two filters operate

in parallel on color & position, and spatial domain respectively. We also initialize the
mean-field update equations with the CNN unaries. The only change in the model is the
type of the pairwise potential function from Gauss to a generalized form.

We evaluate the result after 1 step and 2 steps of mean-field inference and compare
the Gaussian filter versus the learned version (cf. Tab. 5.4). First, as in [52] we observe
that one step of mean field improves the performance by 2.48% in Intersection over
Union (IoU) score. However, a learned potential increases the score by 2.93%. The
same behavior is observed for 2 steps: the learned result again adds on top of the raised
Gaussian mean field performance. Further, we tested a variant of the mean-field model
that learns a separate kernel for the first and second step [169]. This ‘loose’ mean-field
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+ MF-1step + MF-2 step + loose MF-2 step

Semantic segmentation (IoU) - CNN [52]: 72.08 / 66.95
Gauss CRF +2.48 +3.38 +3.38 / +3.00

Learned CRF +2.93 +3.71 +3.85 / +3.37

Material segmentation (Pixel Accuracy) - CNN [25]: 67.21 / 69.23
Gauss CRF +7.91 / +6.28 +9.68 / +7.35 +9.68 / +7.35

Learned CRF +9.48 / +6.23 +11.89 / +6.93 +11.91 / +6.93

Table 5.4: Improved mean-field inference with learned potentials. (top) Average IoU
score on Pascal VOC12 validation/test data [77] for semantic segmentation; (bottom)
Accuracy for all pixels / averaged over classes on the MINC test data [25] for material
segmentation.

model leads to further improvement of the performance. It is not obvious how to take
advantage of a loose model in the case of Gaussian potentials.

Material Segmentation

We adopt the method and dataset from [25] for the material segmentation task. Their
approach proposes the same architecture as in the previous section; a CNN to predict
the material labels (e.g. wool, glass, sky, etc.) followed by a densely connected CRF
using Gaussian potentials and mean-field inference. We re-use the pre-trained CNN
and choose the CRF parameters and Lab color/position features as in [25]. Results for
pixel accuracy and class-averaged pixel accuracy are shown in Table 5.4. Following the
CRF validation in [25], we ignored the label ‘other’ for both the training and evaluation.
For this dataset, the availability of training data is small, 928 images with only sparse
segment annotations. While this is enough to cross-validate few hyper-parameters, we
would expect the general bilateral convolution to benefit from more training data. Visual
results are shown in Fig. 5.7 and more are included in Appendix A.3.3.

5.6 Bilateral Neural Networks
Probably the most promising opportunity for the generalized bilateral filter is its use in
Convolutional Neural Networks. Since we are not restricted to the Gaussian case, we
can stack several filters in both parallel and sequential manner in the same way as filters
are ordered in layers in typical spatial CNN architectures. Having the gradients available
allows for end-to-end training with back-propagation, without the need for any change in
CNN training protocols. We refer to the layers of bilateral filters as ‘bilateral convolution
layers’ (BCL). As discussed in the introduction, these can be understood as either linear
filters in a high dimensional space or a filter with an image adaptive receptive field. In the
remainder, we will refer to CNNs that include at least one bilateral convolutional layer
as a bilateral neural network (BNN).
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Dim.-Features d-dim caffe BCL

2D-(x,y) 3.3 ± 0.3 / 0.5± 0.1 4.8 ± 0.5 / 2.8 ± 0.4
3D-(r,g,b) 364.5 ± 43.2 / 12.1 ± 0.4 5.1 ± 0.7 / 3.2 ± 0.4
4D-(x,r,g,b) 30741.8 ± 9170.9 / 1446.2 ± 304.7 6.2 ± 0.7 / 3.8 ± 0.5
5D-(x,y,r,g,b) out of memory 7.6 ± 0.4 / 4.5 ± 0.4

Table 5.5: Runtime comparison: BCL vs. spatial convolution. Average CPU/GPU
runtime (in ms) of 50 1-neighborhood filters averaged over 1000 images from Pascal
VOC. All scaled features (x,y,r,g,b) ∈ [0,50). BCL includes splatting and splicing op-
erations which in layered networks can be re-used.

What are the possibilities of a BCL compared to a standard spatial layer? First, we can
define a feature space fi ∈ Rd to define proximity between elements to perform the con-
volution. This can include color or intensity as in the previous example. We performed
a runtime comparison (Tab. 5.5) between our current implementation of a BCL and the
caffe [136] implementation of a d-dimensional convolution. For 2D positional features
(first row), the standard layer is faster since the permutohedral algorithm comes with an
overhead. For higher dimensions d > 2, the runtime depends on the sparsity; but ignor-
ing the sparsity is quickly leading to intractable runtimes for the regular d-dimensional
convolution. The permutohedral lattice convolution is in effect a sparse matrix-vector
product and thus performs favorably in this case. In the original work [7], it was pre-
sented as an approximation to the Gaussian case, here we take the viewpoint of it being
the definition of the convolution itself.

Next we illustrate two use cases of BNNs and compare against spatial CNNs. Ap-
pendix A.3 contains further explanatory experiments with examples on MNIST digit
recognition.

5.6.1 An Illustrative Example: Segmenting Tiles
In order to highlight the model possibilities of using higher dimensional sparse feature
spaces for convolutions through BCLs, we constructed the following illustrative prob-
lem. A randomly colored foreground tile with size 20×20 is placed on a random colored
background of size 64×64. Gaussian noise with standard deviation of 0.02 is added and
color values are normalized to [0,1], example images are shown in Fig. 5.8a. The task
is to segment out the smaller tile. A pixel classifier can not distinguish foreground from
background since the color is random. We train CNNs with three convolution/ReLU lay-
ers and varying filters of size n×n,n ∈ {9,13,17,21}. The schematic of the architecture
is shown in Fig 5.8b (32,16,2 filters). We create 10k training, 1k validation and 1k test
images and, use the validation set to choose learning rates. In Fig. 5.8c, we plot the
validation IoU against training epochs.

Now, we replace all spatial convolutions with bilateral convolutions for a full BNN.
The features are fi = (xi,yi,ri,gi,bi)

> and the filter has a neighborhood of 1. The total
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(a) Sample tile images
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Figure 5.8: Segmenting Tiles. (a) Example tile input images; (b) the 3-layer NN ar-
chitecture used in experiments. ‘Conv’ stands for spatial convolutions, resp. bilateral
convolutions; (c) Training progress in terms of validation IoU versus training epochs.

number of parameters in this network is around 40k compared to 52k for 9×9 up to 282k
for a 21×21 CNN. With the same training protocol and optimizer, the convergence rate
of BNN is much faster. In this example as in semantic segmentation discussed in the last
section, color is a discriminative information for the label. The bilateral convolutions see
the color difference, the points are already pre-grouped in the permutohedral lattice and
the task remains to assign a label to the two groups.

5.6.2 Character Recognition
The results for tile, semantic, and material segmentation when using general bilateral
filters mainly improved because the feature space was used to encode useful prior infor-
mation about the problem (similar RGB of close-by pixels have the same label). Such
prior knowledge is often available when structured predictions are to be made, but the
input signal may also be in a sparse format to begin with. Let us consider handwritten
character recognition, one of the prime cases for CNN use.

The Assamese character dataset [17] contains 183 different Indo-Aryan symbols with
45 writing samples per class. Some sample character images are shown in Fig. 5.9a.
This dataset has been collected on a tablet PC using a pen input device and has been
pre-processed to binary images of size 96× 96. Only about 3% of the pixels contain a
pen stroke, which we will denote by Ii = 1.

A CNN is a natural choice to approach this classification task. We experiment with
two CNN architectures that have been used for this task, LeNet-7 from [158] and Deep-
CNet [56, 100]. The LeNet is a shallower network with bigger filter sizes whereas
DeepCNet is deeper with smaller convolutions. Both networks are fully specified in
Appendix A.3.3. In order to simplify the task for the networks we cropped the characters
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(a) Sample Assamese character images (9 classes, 2 samples
each)

(b) LeNet training (c) DeepCNet training

Figure 5.9: Character recognition. (a) Sample Assamese character images [17]; and
training progression of various models with (b) LeNet and (c) DeepCNet base networks.

by placing a tight bounding box around them and providing the bounding boxes as in-
put to the networks. We will call these networks Crop-LeNet and Crop-DeepCNet. For
training, we randomly divided the data into 30 writers for training, 6 for validation and
the remaining 9 for test. Fig.5.9b and Fig. 5.9c show the training progress for various
LeNet and DeepCNet models respectively. DeepCNet is a better choice for this problem
and for both cases, pre-processing the data by cropping improves convergence.

The input is spatially sparse and the BCL provides a natural way to take advantage of
this. For both networks, we create a BNN variant (BNN-LeNet and BNN-DeepCNet) by
replacing the first layer with bilateral convolutions using the features fi = (xi,yi)

> and
we only consider the foreground points Ii = 1. The values (xi,yi) denote the position of
the pixel with respect to the top-left corner of the bounding box around the character.
In effect, the lattice is very sparse which reduces runtime because the convolutions are
only performed on 3% of the points that are actually observed. A bilateral filter has
7 parameters compared to a receptive field of 3× 3 for the first DeepCNet layer and
5× 5 for the first LeNet layer. Thus, a BCL with the same number of filters has fewer
parameters. The result of the BCL convolution is then splatted at all points (xi,yi) and
passed on to the remaining spatial layers. The convergence behavior is shown in Fig.5.9
and again we find faster convergence and also better validation accuracy. The empirical
results of this experiment for all tested architectures are summarized in Table 5.6, with
BNN variants clearly outperforming their spatial counterparts.

The absolute results can be vastly improved by making use of virtual examples, e.g.
by affine transformations [100]. The purpose of these experiments is to compare the
networks on equal grounds while we believe that additional data will be beneficial for
both networks. We have no reason to believe that a particular network benefits more.
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5.7 Discussion and Conclusions

LeNet Crop-LeNet BNN-LeNet DeepCNet
Crop-

DeepCNet
BNN-

DeepCNet

Validation 59.29 68.67 75.05 82.24 81.88 84.15
Test 55.74 69.10 74.98 79.78 80.02 84.21

Table 5.6: Results on Assamese character images. Total recognition accuracy for the
different models.

5.7 Discussion and Conclusions
We proposed to learn bilateral filters from data. In hindsight, it may appear obvious
that this leads to performance improvements compared to a fixed parametric form, e.g.
the Gaussian. To understand algorithms that facilitate fast approximate computation of
Eq. (5.1) as a parameterized implementation of a bilateral filter with free parameters
is the key insight and enables gradient descent based learning. We relaxed the non-
separability in the algorithm from [7] to allow for more general filter functions. There is
a wide range of possible applications for learned bilateral filters [200] and we discussed
some generalizations of previous work. These include joint bilateral up-sampling and
inference in dense CRFs. We further demonstrated a use case of bilateral convolutions
in neural networks.

The bilateral convolutional layer allows for filters whose receptive field change given
the input image. The feature space view provides a canonical way to encode similarity
between any kind of objects, not only pixels, but e.g. bounding boxes, segmentation, sur-
faces. The proposed filtering operation is then a natural candidate to define a filter con-
volutions on these objects, it takes advantage of sparsity and scales to higher dimensions.
Therefore, we believe that this view will be useful for several problems where CNNs can
be applied. An open research problem is whether the sparse higher dimensional structure
also allows for efficient or compact representations for intermediate layers inside CNN
architectures.

In summary, the proposed technique for learning sparse high-dimensional filters re-
sults in a generalization of bilateral filters that helps in learning task-specific bilateral
filters. In the context of inference, learnable bilateral filters can be used for better mod-
eling and thus inference in neural network as well as DenseCRF models.
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Chapter 6

Video Propagation Networks

In this chapter, we leverage the learnable bilateral filters developed in the previous chap-
ter, and develop a novel neural network architecture for inference in video data. We
focus on the task of propagating information across video frames. Standard CNNs are
poor candidates for filtering video data. Standard spatial CNNs have fixed receptive
fields whereas the video content changes differently in different videos depending on
the type of scene and camera motion. So, filters with video adaptive receptive fields are
better candidates for video filtering.

Based on this observation, we adapt the bilateral convolution layers (BCL) proposed
in the previous chapter for filtering video data. By stacking several BCL and standard
spatial convolutional layers, we develop a neural network architecture for video infor-
mation propagation which we call ‘Video Propagation Network’ (VPN). We evaluate
VPN on different tasks of video object segmentation and semantic video segmentation
and show increased performance comparing to the best previous task-specific methods,
while having favorable runtime. Additionally we demonstrate our approach on an exam-
ple regression task of propagating color in a grayscale video.

6.1 Introduction

We focus on the problem of propagating structured information across video frames in
this chapter. This problem appears in many forms (e.g., semantic segmentation or depth
estimation) and is a pre-requisite for many applications. An example instance is shown
in Fig. 6.1. Given an accurate object mask for the first frame, the problem is to propagate
this mask forward through the entire video sequence. Propagation of semantic informa-
tion through time and video colorization are other problem instances.

Videos pose both technical and representational challenges. The presence of scene
and camera motion lead to the difficult association problem of optical flow. Video data
is computationally more demanding than static images. A naive per-frame approach
would scale at least linear with frames. These challenges complicate the use of standard
convolutional neural networks (CNNs) for video processing. As a result, many previous
works for video propagation use slow optimization based techniques.
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Video Propagation Network (VPN)

Bilateral
Network

Spatial
Network

Guidance

Prev. frame masks

Present frame mask

Input Video Frames

Frame 1 Frame 13 Frame 22 Frame 63

Given Mask Predicted Masks

Figure 6.1: Video Propagation with VPNs. The end-to-end trained VPN network is
composed of a bilateral network followed by a standard spatial network and can be used
for propagating information across frames. Shown here is an example result of fore-
ground mask from the 1st frame to other video frames.

We propose a generic neural network architecture that propagates information across
video frames. The main innovation is the use of image adaptive convolutional operations
that automatically adapt to the video stream content. This allows the network to adapt to
the changing content of the video stream. It can be applied to several types of informa-
tion, e.g. labels, colors, etc. and runs online, that is, only requiring current and previous
frames.

Our architecture is composed of two components (see Fig. 6.1). A temporal bilateral
network that performs image-adaptive spatio-temporal dense filtering. This part allows to
connect densely all pixels from current and previous frames and to propagate associated
pixel information to the current frame. The bilateral network allows the specification
of a metric between video pixels and allows a straight-forward integration of temporal
information. This is followed by a standard spatial CNN on the filter output to refine
and predict for the present video frame. We call this combination a Video Propagation
Network (VPN). In effect we are combining a filtering technique with rather small spatial
CNNs which leads to a favorable runtime compared to many previous approaches.
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VPNs have the following suitable properties for video processing:

General applicability: VPNs can be used for propagating any type of information
content i.e., both discrete (e.g., semantic labels) and continuous (e.g. color) information
across video frames.

Online propagation: The method needs no future frames and so can be used for online
video analysis.

Long-range and image adaptive: VPNs can efficiently handle a large number of input
frames and are adaptive to the video.

End-to-end trainable: VPNs can be trained end-to-end, so they can be used in other
deep network architectures.

Favorable runtime: VPNs have favorable runtime in comparison to several current
best methods, also making them amenable for learning with large datasets.

Empirically we show that VPNs, despite being generic, perform better or on-par with
current best approaches on video object segmentation and semantic label propagation
while being faster. VPNs can easily be integrated into sequential per-frame approaches
and require only a small fine-tuning step that can be performed separately.

6.2 Related Work
The literature on propagating information across video frames contains a vast and var-
ied number of approaches. Here, we only discuss those works that are related to our
technique and applications.

General propagation techniques Techniques for propagating content across image or
video pixels are predominantly optimization based or filtering techniques. Optimization
based techniques typically formulate the propagation as an energy minimization prob-
lem on a graph constructed across video pixels or frames. A classic example is the color
propagation technique from [164] which uses graph structure that encodes prior knowl-
edge about pixel colors in a local neighborhood. Although efficient closed-form solu-
tions [165] exists for certain scenarios, optimization tends to be slow due to either large
graph structures for videos and/or the use of complex connectivity resulting in the use of
iterative optimization schemes. Fully-connected conditional random fields (CRFs) [151]
open a way for incorporating dense and long-range pixel connections while retaining fast
inference.

Filtering techniques [148, 49, 109] aim to propagate information with the use of image
or video filters resulting in fast runtimes compared to optimization techniques. Bilateral
filtering [15, 251] is one of the popular filters for long-range information propagation.
We have already discussed bilateral filtering and its generalization in the previous chap-
ter. A popular application, that is also discussed in previous chapter, is joint bilateral up-
sampling [148] that up-samples a low-resolution signal with the use of a high-resolution
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guidance image. Chapter 5 and the works of [169, 69, 279, 220, 21] showed that one
can back-propagate through the bilateral filtering operation for learning filter parame-
ters (Chapter 5) or doing optimization in the bilateral space [21, 20]. Recently, several
works proposed to do upsampling in images by learning CNNs that mimics edge-aware
filtering [270] or that directly learns to up-sample [167, 123]. Most of these works are
confined to images and are either not extendible or computationally too expensive for
videos. We leverage some of these previous works and propose a scalable yet robust
neural network based approach for video content propagation.

Video object segmentation Prior work on video object segmentation can be broadly
categorized into two types: Semi-supervised methods that require manual annotation
to define what is foreground object and unsupervised methods that does segmentation
completely automatically. Unsupervised techniques such as [78, 166, 163, 197, 263,
277, 245, 70] use some prior information about the foreground objects such as distinctive
motion, saliency etc. And, they typically fail if these assumptions do not hold in a video.

In this work, we focus on the semi-supervised task of propagating the foreground
mask from the first frame to the entire video. Existing works predominantly use graph-
based optimization frameworks that perform graph-cuts [31, 32, 227] on video data.
Several of these works [212, 168, 203, 262, 146, 130] aim to reduce the complexity of
graph structure with clustering techniques such as spatio-temporal superpixels and op-
tical flow [255]. Another direction was to estimate correspondence between different
frame pixels [9, 18, 156] by using nearest neighbor fields [79] or optical flow [55] and
then refine the propagated masks with the use of local classifiers. Closest to our tech-
nique are the works of [202] and [180]. [202] proposed to use fully-connected CRF over
the refined object proposals across the video frames. [180] proposed a graph-cut in the
bilateral space. Our approach is similar in the regard that we also use a bilateral space
embedding. Instead of graph-cuts, we learn propagation filters in the high-dimensional
bilateral space with CNNs. This results in a more generic architecture and allows inte-
gration into other deep learning frameworks.

Two contemporary works [45, 141] proposed CNN based approaches for video ob-
ject segmentation. Both works rely on fine-tuning a deep network using the first frame
annotation of a given test sequence. This could potentially result in overfitting to the
background. In contrast, the proposed approach relies only on offline training and thus
can be easily adapted to different problem scenarios.

Semantic video segmentation Earlier methods such as [40, 237] use structure from
motion on video frames to compute geometrical and/or motion features. More recent
works [76, 50, 64, 182, 253, 154] construct large graphical models on videos and en-
force temporal consistency across frames. [50] used dynamic temporal links in their
CRF energy formulation. [64] proposes to use Perturb-and-MAP random field model
with spatio-temporal energy terms based on Potts model and [182] propagate predictions
across time by learning a similarity function between pixels of consecutive frames.
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Bilateral Network (BNN) Spatial Network (CNN)
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Figure 6.2: Computation Flow of Video Propagation Network. Bilateral networks
(BNN) consist of a series of bilateral filterings interleaved with ReLU non-linearities.
The filtered information from BNN is then passed into a spatial network (CNN) which
refines the features with convolution layers interleaved with ReLU non-linearities, re-
sulting in the prediction for the current frame.

In the recent years, there is a big leap in the performance of semantic image segmen-
tation [176, 52] with the use of CNNs but mostly applied to images. Recently, [225]
proposed to retain the intermediate CNN representations while sliding the image based
CNN across the frames. Another approach, which inspired our work, is to take unary
predictions from CNN and then propagate semantic information across the frames. A
recent prominent approach in this direction is of [154] which proposes a technique for
optimizing feature spaces for fully-connected CRF.

6.3 Video Propagation Networks
We aim to adapt the bilateral filtering operation to predict information forward in time,
across video frames. Formally, we work on a sequence of n (color or grayscale) images
x = {x1,x2, · · · ,xn} and denote with y = {y1,y2, · · · ,yn} a sequence of outputs, one per
frame. Consider as an example, a sequence y1, . . . ,yn of foreground masks for a moving
object in the scene. Our goal is to develop an online propagation method, that is, a
function that has no access to the future frames. Formally we predict yt , having observed
the video up to frame t and possibly previous y1,··· ,t−1

F(yt−1,yt−2, · · · ;xt ,xt−1,xt−2, · · ·) = yt . (6.1)

If training examples (x,y) with full or partial knowledge of y are available, it is pos-
sible to learn F and for a complex and unknown relationship between input and output,
a deep CNN is a natural design choice. However, any learning based method has to face
the main challenge: the scene and camera motion and its effect on y. Since no motion in
two different videos is the same, fixed-sized static receptive fields of CNN units are in-
sufficient. We propose to resolve this with video-adaptive convolutional component, an
adaption of the bilateral filtering to videos. Our Bilateral Network (Section 6.3.1) has a
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Figure 6.3: Schematic of Fast Bilateral Filtering for Video Processing. Mask proba-
bilities from previous frames V1,··· ,t−1 are splatted on to the lattice positions defined by
the image features fI1, fI2, · · · , fIt−1 . The splatted result is convolved with a 1×1 filter B,
and the filtered result is sliced back to the original image space to get Vt for the present
frame. Input and output need not be Vt , but can also be an intermediate neural network
representation. B is learned via back-propagation through these operations.

connectivity that adapts to video sequences, its output is then fed into a common Spatial
Network (Section 6.3.2) that further refines the desired output. The combined network
layout of this Video Propagation Network is depicted in Fig. 6.2. It is a sequence of
learnable bilateral and spatial filters that is efficient, trainable end-to-end and adaptive to
the video input.

6.3.1 Bilateral Network (BNN)

In this section, we describe the extension of the learnable bilateral filtering, proposed
in Chapter 5 to video data. Several properties of bilateral filtering make it a perfect
candidate for information propagation in videos. In particular, our method is inspired
by two main ideas that we extend in this work: joint bilateral up-sampling [148] and
learnable bilateral filters (Chapter 5). Although, bilateral filtering has been used for
filtering video data before [198], its use has been limited to fixed filter weights (say,
Gaussian).

Fast Bilateral Up-sampling across Frames The idea of joint bilateral up-sampling [148]
is to view up-sampling as a filtering operation. A high resolution guidance image is used
to up-sample a low-resolution result. In short, a smaller number of input points yi and
the corresponding features fi are given yi, fi; i = 1, . . . ,Nin, for example a segmentation
result yi at a lower resolution. This is then scaled to a larger number of output points
f j; j = 1, . . . ,Nout using the bilateral filtering operation, that is to compute the following
bilateral filtering equation:
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y′i =
n

∑
j=1

wfi,f jy j (6.2)

where the sum runs over all Nin points and the output is computed for all Nout positions.
We will use this idea to propagate content from previous frames to the current frame (all
of which have the same dimensions), using the current frame as a guidance image. This
is illustrated in Fig. 6.3. We take all previous frame results y1,··· ,t−1 and splat them into
a lattice using the features computed on video frames x1,··· ,t−1. A filtering (described
below) is applied to every lattice point and the result is then sliced back using the current
frame xt . This result need not be the final yt , in fact we compute a filter bank of responses
and continue with further processing as will be discussed.

For videos, we need to extend bilateral filtering to temporal data, and there are two
natural choices. First, one can simply attach a frame index t as an additional time di-
mension to the input data, yielding a six dimensional feature vector f = (x,y,r,g,b, t)>

for every pixel in every frame. The summation in Eq. (6.2) now runs over all previous
frames and pixels. Imagine a video where an object moves to reveal some background.
Pixels of the object and background will be close spatially (x,y) and temporally (t) but
likely be of different color (r,g,b). Therefore they will have no strong influence on each
other (being splatted to distant positions in the six-dimensional bilateral space). In sum-
mary, one can understand the filter to be adaptive to color changes across frames, only
pixels that are static and have similar color have a strong influence on each other (end up
nearby in the lattice space). The second possibility is to use optical flow. If the perfect
flow is available, the video frames could be warped into a common frame of reference.
This would resolve the corresponding problem and make information propagation much
easier. We can make use of an optical flow estimate by warping pixel positions (x,y) by
their displacement vector (ux,uy) to (x+ux,y+uy).

Another property of permutohedral filtering that we exploit is that the inputs points
need not lie on a regular grid since the filtering is done in the high-dimensional lattice.
Instead of splatting millions of pixels on to the lattice, we randomly sample or use super-
pixels and perform filtering using these sampled points as input to the filter. In practice,
we observe that this results in big computational gains with minor drop in performance
(more in Sec. 6.4.1).

Learnable Bilateral Filters The property of propagating information forward using a
guidance image through filtering solves the problem of pixel association. But a Gaussian
filter may be insufficient and further, we would like to increase the capacity by using
a filter bank instead of a single fixed filter. We propose to use the technique proposed
in previous chapter to learn the filter values in the permutohedral lattice using back-
propagation.

The process works as follows. A input video is used to determine the positions in the
bilateral space to splat the input points y(i) ∈ RD i.e. the features f (e.g. (x,y,r,g,b, t))
define the splatting matrix Ssplat . This leads to a number of vectors ysplatted = Ssplaty,
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that lie on the permutohedral lattice, with dimensionality ysplatted ∈ RD. In effect, the
splatting operation groups points that are close together, that is, they have similar fi, f j.
All lattice points are now filtered using a filter bank B ∈RF×D which results in F dimen-
sional vectors on the lattice points. These are sliced back to the Nout points of interest
(present video frame). The values of B are learned by back-propagation. General pa-
rameterization of B from previous chapter allows to have any neighborhood size for the
filters. Since constructing the neighborhood structure in high-dimensions is time con-
suming, we choose to use 1× 1 filters for speed reasons. This makes up one Bilateral
Convolution Layer (BCL) which we will stack and concatenate to form a Bilateral Net-
work. See Fig. 6.3 for an illustration of a BCL.

BNN Architecture The Bilateral Network (BNN) is illustrated in the green box of
Fig. 6.2. The input is a video sequence x and the corresponding predictions y up to
frame t. Those are filtered using two BCLs with 32 filters each. For both BCLs, we use
the same features f but scale them with different diagonal matrices fa = Λaf, fb = Λbf.
The feature scales are found by cross-validation. The two 32 dimensional outputs are
concatenated, passed through a ReLU non-linearity and passed to a second layer of two
separate BCL filters that uses same feature spaces fa, fb. The output of the second filter
bank is then reduced using a 1×1 spatial filter (C-1) to map to the original dimension of
y. We investigated scaling frame inputs with an exponential time decay and found that,
when processing frame t, a re-weighting with (αyt−1,α

2yt−2,α
3yt−3 · · ·) with 0≤α ≤ 1

improved the performance a little bit.

In the experiments, we also included a simple BNN variant, where no filters are applied
inside the permutohedral space, just splatting and slicing with the two layers BCLa and
BCLb and adding the results. We will refer to this model as BNN-Identity, it corresponds
to an image adaptive smoothing of the inputs y. We found this filtering to have a positive
effect and include it as a baseline in our experiments.

6.3.2 Spatial Network

The BNN was designed to propagate the information from the previous frames, respect-
ing the scene and object motion. We then add a small spatial CNN with 3 layers, each
with 32 filters of size 3× 3, interleaved with ReLU non-linearities. The final result is
then mapped to the desired output of yt using a 1×1 convolution. The main role of this
spatial CNN is to refine the information in frame t. Depending on the problem and the
size of the available training data, other network designs are conceivable. We use the
same network architecture shown in Fig. 6.2 for all the experiments to demonstrate the
generality of VPNs.
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6.4 Experiments

6.4 Experiments
We evaluated VPN on three different propagation tasks: foreground masks, semantic
labels and color information in videos. Our implementation runs in Caffe [136] us-
ing standard settings. We used Adam [144] stochastic optimization for training VPNs,
multinomial-logistic loss for label propagation networks and Euclidean loss for training
color propagation networks. Runtime computations were performed using a Nvidia Ti-
tanX GPU and a 6 core Intel i7-5820K CPU clocked at 3.30GHz machine. We will make
available all the code and experimental results.

6.4.1 Video Object Segmentation

The task of class-agnostic video object segmentation aims to segment foreground objects
in videos. Since the semantics of the foreground object is not pre-defined, this problem
is usually addressed in a semi-supervised manner. The goal is to propagate a given fore-
ground mask of the first frame to the entire video frames. Object segmentation in videos
is useful for several high level tasks such as video editing, summarization, rotoscoping
etc.

Dataset We use the recently published DAVIS dataset [201] for experiments on this
task. The DAVIS dataset consists of 50 high-quality (1080p resolution) unconstrained
videos with number of frames in each video ranging from 25 to 104. All the frames
come with high-quality per-pixel annotation of the foreground object. The videos for
this dataset are carefully chosen to contain motion blur, occlusions, view-point changes
and other occurrences of object segmentation challenges. For robust evaluation and to get
results on all the dataset videos, we evaluate our technique using 5-fold cross-validation.
We randomly divided the data into 5 folds, where in each fold, we used 35 images for
training, 5 for validation and the remaining 10 for the testing. For the evaluation, we used
the 3 metrics that are proposed in [201]: Intersection over Union (IoU) score, Contour
accuracy (F) score and temporal instability (T ) score. The widely used IoU score is
defined as T P/(T P + FN + FP), where TP: True positives; FN: False negatives and
FP: False positives. Please refer to [201] for the definition of the contour accuracy and
temporal instability scores. We are aware of some other datasets for this task such as
JumpCut [79] and SegTrack [254], but we note that the number of videos in these datasets
is too small for a learning based approach.

VPN and Results In this task, we only have access to foregound mask for the first
frame V1. For the ease of training VPN, we obtain initial set of predictions with BNN-
Identity. We sequentially apply BNN-Identity at each frame and obtain an initial set of
foreground masks for the entire video. These BNN-Identity propagated masks are then
used as inputs to train a VPN to predict the refined masks at each frame. We refer to
this VPN model as VPN-Stage1. Once VPN-Stage1 is trained, its refined training mask
predictions are in-turn used as inputs to train another VPN model which we refer to as
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Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 All

BNN-Identity 56.4 74.0 66.1 72.2 66.5 67.0
VPN-Stage1 58.2 77.7 70.4 76.0 68.1 70.1
VPN-Stage2 60.9 78.7 71.4 76.8 69.0 71.3

Table 6.1: 5-Fold Validation on DAVIS Video Segmentation Dataset. Average IoU
scores for different models on the 5 folds.
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Figure 6.4: Random Sampling of Input Points vs. IoU. The effect of randomly sam-
pling points from input video frames on object segmentation IoU of BNN-Identity on
DAVIS dataset. The points sampled are out of ≈2 million points from the previous 5
frames.

VPN-Stage2. This resulted in further refinement of foreground masks. Training further
stages did not result in any improvements.

Following the recent work of [180] on video object segmentation, we used scaled fea-
tures f = (x,y,Y,Cb,Cr, t) with YCbCr color features for bilateral filtering. To be compa-
rable with the one of the fastest state-of-the-art technique [180], we do not use any optical
flow information. First, we analyze the performance of BNN-Identity by changing the
number of randomly sampled input points. Figure 6.4 shows how the segmentation IoU
changes with the increase in the number of sampled points (out of 2 million points) from
the previous frames. The IoU levels out after sampling 25% of points. For further com-
putational efficiency, we used superpixel sampling instead of random sampling. Usage of
superpixels reduced the IoU slightly (0.5%), while reducing the number of input points
by a factor of 10 in comparison to a large number of randomly sampled points. We used
12000 SLIC [6] superpixels from each frame computed using the fast GPU implementa-
tion from [210]. For predictions at each frame, we input mask probabilities of previous
9 frames into VPN as we observe no significant improvements with more frames. We set
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IoU↑ F ↑ T ↓ Runtime(s)

BNN-Identity 67.0 67.1 36.3 0.21
VPN-Stage1 70.1 68.4 30.1 0.48
VPN-Stage2 71.3 68.9 30.2 0.75

With pre-trained models
DeepLab 57.0 49.9 47.8 0.15
VPN-DeepLab 75.0 72.4 29.5 0.63

OFL [255] 71.1 67.9 22.1 >60
BVS [180] 66.5 65.6 31.6 0.37
NLC [78] 64.1 59.3 35.6 20
FCP [202] 63.1 54.6 28.5 12
JMP [79] 60.7 58.6 13.2 12
HVS [106] 59.6 57.6 29.7 5
SEA [206] 55.6 53.3 13.7 6

Table 6.2: Results of Video Object Segmentation on DAVIS dataset. Average IoU
score, contour accuracy (F), temporal instability (T ) scores, and average runtimes (in
seconds) per frame for different VPN models along with recent published techniques
for this task. VPN runtimes also include superpixel computation (10ms). Runtimes of
other methods are taken from [180, 202, 255] and only indicative and are not directly
comparable to our runtimes. Runtime of VPN-Stage1 includes the runtime of BNN-
Identity which is in-turn included in the runtime of VPN-Stage2. Runtime of VPN-
DeepLab model includes the runtime of DeepLab.

α to 0.5 and the feature scales for bilateral filtering are presented in Tab. A.4.
Table 6.1 shows the IoU scores for each of the 5 folds and Tab. 6.2 shows the overall

scores and runtimes of different VPN models along with the best performing segmenta-
tion techniques. The performance improved consistently across all 5 folds with the ad-
dition of new VPN stages. BNN-Identity already performed reasonably well. And with
1-stage and 2-stage VPNs, we outperformed the present fastest BVS method [180] by a
significant margin on all the performance measures of IoU, contour accuracy and tempo-
ral instability scores, while being comparable in runtime. We perform marginally better
than OFL method [255] while being at least 80× faster and OFL relies on optical flow
whereas we obtain similar performance without using any optical flow. Further, VPN
has the advantage of doing online processing as it looks only at previous frames whereas
BVS processes entire video at once. One can obtain better VPN performance with using
better superpixels and also incorporating optical flow, but this increases runtime as well.
Figure 6.5 shows some qualitative results and more are present in Figs. A.16. A couple
of failure cases are shown in Fig. A.17. Visual results indicate that learned VPN is able
to retain foreground masks even with large variations in viewpoint and object size.
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Figure 6.5: Video Object Segmentation. Shown are the different frames in example
videos with the corresponding ground truth (GT) masks, predictions from BVS [180],
OFL [255], VPN (VPN-Stage2) and VPN-DLab (VPN-DeepLab) models.

Augmenation of Pre-trained Models: One of the main advantages of the proposed
VPN architecture is that it is end-to-end trainable and can be easily integrated into other
deep neural network architectures. To demonstrate this, we augmented VPN architecture
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with standard DeepLab segmentation architecture from [52]. We replaced the last classi-
fication layer of DeepLab-LargeFOV model from [52] to output 2 classes (foreground
and background) in our case and bi-linearly up-sampled the resulting low-resolution
probability map to the original image dimension. 5-fold fine-tuning of the DeepLab
model on DAVIS dataset resulted in the IoU of 57.0 and other scores are shown in
Tab. 6.2. Then, we combine the VPN and DeepLab models in the following way: The
output from the DeepLab network and the bilateral network are concatenated and then
passed on to the spatial network. In other words, the bilateral network propagates label
information from previous frames to the present frame, whereas the DeepLab network
does the prediction for the present frame. The results of both are then combined and
refined by the spatial network in the VPN architecture. We call this ‘VPN-DeepLab’
model. We trained this model end-to-end and observed big improvements in perfor-
mance. As shown in Tab. 6.2, the VPN-DeepLab model has the IoU score of 75.0 and
contour accuracy score of 72.4 resulting in significant improvements over the published
results. Since DeepLab has also fast runtime, the total runtime of VPN-DeepLab is only
0.63s which makes this also one of the fastest video segmentation systems. A couple
of visual results of VPN-DeepLab model are shown in Fig. 6.5 and more are present in
Figs. A.16 and A.17.

6.4.2 Semantic Video Segmentation

A semantic video segmentation assigns a semantic label to every video pixel. Since the
semantics between adjacent frames does not change radically, intuitively, propagating
semantic information across frames should improve the segmentation quality of each
frame. Unlike mask propagation in the previous section where the ground-truth mask for
the first frame is given, we approach semantic video segmentation in a fully automatic
fashion. Specifically, we start with the unary predictions of standard CNNs and use VPN
for propagating semantics across the frames.

Dataset We use the CamVid dataset [39] that contains 4 high quality videos captured at
30Hz while the semantically labelled 11-class ground truth is provided at 1Hz. While the
original dataset comes at a resolution of 960×720, similar to previous works [273, 154],
we operate on a resolution of 640×480. We use the same splits proposed in [237] re-
sulting in 367, 100 and 233 frames with ground-truth for training, validation and testing.
Following common practice, we report the IoU scores for evaluation.

VPN and Results Since we already have CNN predictions for every frame, we train a
VPN that takes the CNN predictions of previous and present frames as input and predicts
the refined predictions for the present frame. We compare with the state-of-the-art CRF
approach for this problem [154] which we refer to as ‘FSO-CRF’. Following [154], we
also experimented with optical flow in our framework and refer that model as VPN-Flow.
We used the fast optical flow method that uses dense inverse search [153] to compute
flows and modify the positional features of previous frames. We used the superpixels
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IoU Runtime(s)

CNN from [273] 65.3 0.38
+ FSO-CRF [154] 66.1 >10
+ BNN-Identity 65.3 0.31
+ BNN-Identity-Flow 65.5 0.33
+ VPN (Ours) 66.5 0.35
+ VPN-Flow (Ours) 66.7 0.37

CNN from [214] 68.9 0.30
+ VPN-Flow (Ours) 69.5 0.38

Table 6.3: Results of Semantic Segmentation on the CamVid Dataset. Average IoU
and runtimes (in seconds) per frame of different models on test split. Runtimes exclude
CNN computations which are shown separately. VPN and BNN-Identity runtimes in-
clude superpixel computation which takes up large portion of computation time (0.23s).

Input GT CNN +VPN(Ours)

Figure 6.6: Semantic Video Segmentation. Input video frames and the corresponding
ground truth (GT) segmentation together with the predictions of CNN [273] and with
VPN-Flow.

method of Dollar et al. [66] for this dataset as gSLICr [210] has introduced artifacts.
We experimented with predictions from two different CNNs: One is with dilated con-

volutions [273] (CNN-1) and another one [214] (CNN-2) is trained with the additional
data obtained from a video game, which is the present state-of-the-art on this dataset.
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PSNR Runtime(s)

BNN-Identity 27.89 0.29
VPN-Stage1 28.15 0.90

Levin et al. [164] 27.11 19

Table 6.4: Results of Video Color Propagation. Average PSNR results and runtimes of
different methods for video color propagation on images from DAVIS dataset.

For CNN-1 and CNN-2, using 2 and 3 previous frames respectively as input to VPN is
found to be optimal. Other parameters of the bilateral network are presented in Tab. A.4.
Table 6.3 shows quantitative results on this dataset. Using BNN-Identity only slightly im-
proved the CNN performance whereas training the entire VPN significantly improved the
CNN performance by over 1.2% IoU, with both VPN and VPN-Flow networks. More-
over, VPN is at least 25× faster, and simpler to use compared to the optimization based
FSO-CRF which relies on LDOF optical flow [41], long-term tacks [240] and edges [67].
We further improved the performance of the state-of-the-art CNN [214] with the use of
VPN-Flow model. Using better optical flow estimation might give even better results.
Figure A.14 shows some qualitative results and more are presented in Fig. A.18.

6.4.3 Video Color Propagation
We also evaluate VPNs on a different kind of information and experimented with prop-
agating color information in a grayscale video. Given the color image for the first video
frame, the task is to propagate the color to the entire video. Note that this task is fun-
damentally different from automatic colorization of images for which recent CNN based
based methods have become popular. For experiments on this task, we again used the
DAVIS dataset [201] with the first 25 frames from each video. We randomly divided the
dataset into 30 train, 5 validation and 15 test videos.

We work with YCbCr representation of images and propagate CbCr values from pre-
vious frames with pixel intensity, position and time features as guidance for VPN. The
same strategy as in object segmentation is used, where an initial set of color propagated
results was obtained with BNN-Identity and then used to trained a VPN-Stage1 model.
Training further VPN stages did not improve the performance. Table 6.4 shows the
PSNR results. We use 300K radomly sampled points from previous 3 frames as input
to the VPN network. We also show a baseline result of [164] that does graph based
optimization and uses optical flow. We used fast DIS optical flow [153] in the baseline
method [164] and we did not observe significant differences with using LDOF optical
flow [41]. Figure 6.7 shows a visual result with more in Fig. A.19. From the results,
VPN works reliably better than [164] while being 20× faster. The method of [164] relies
heavily on optical flow and so the color drifts away with incorrect flow. We observe that
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Figure 6.7: Video Color Propagation. Input grayscale video frames and corresponding
ground-truth (GT) color images together with color predictions of Levin et al. [164] and
VPN-Stage1 models.

our method also bleeds color in some regions especially when there are large viewpoint
changes. We could not compare against recent video color propagation techniques such
as [114, 226] as their codes are not available online. This application shows general
applicability of VPNs in propagating different kinds of information.

6.5 Discussion and Conclusions
We proposed a fast, scalable and generic neural network based learning approach for
propagating information across video frames. The video propagation network uses bi-
lateral network for long-range video-adaptive propagation of information from previous
frames to the present frame which is then refined by a standard spatial network. Experi-
ments on diverse tasks show that VPNs, despite being generic, outperformed the current
state-of-the-art task-specific methods. At the core of our technique is the exploitation
and modification of learnable bilateral filtering for the use in video processing. We used
a simple and fixed network architecture for all the tasks for showcasing the generality
of the approach. Depending on the type of problems and the availability of data, using
more filters and deeper layers would result in better performance. In this work, we man-
ually tuned the feature scales which could be amendable to learning. Finding optimal yet
fast-to-compute bilateral features for videos together with the learning of their scales is
an important future research direction.
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Chapter 7

Bilateral Inception Networks

Following up on previous chapters, where we introduced learnable bilateral filters and
their application to a wide range of problems, in this chapter, we construct a CNN module
which we call ‘Bilateral Inception’ that can be inserted into existing CNN architectures
for better inference in pixel prediction tasks. The bilateral inception module performs bi-
lateral filtering, at multiple feature-scales, between superpixels in an image. The feature
spaces for bilateral filtering and other parameters of the module are learned end-to-end
using standard back-propagation techniques. Instead of using learnable bilateral filtering
proposed in Chapter 5, here, we explicitly construct the Gaussian filter kernel between
input and output superpixels. We show how this explicit Gaussian filtering results in fast
runtimes and also enables the learning of bilateral features.

We focus on the problem of semantic segmentation. The bilateral inception mod-
ule addresses two issues that arise with general CNN segmentation architectures. First,
this module propagates information between (super)pixels while respecting image edges,
thus using the structured information of the problem for improved results. Second, the
layer recovers a full resolution segmentation result from the lower resolution solution of
a CNN.

In the experiments, we modify several existing CNN architectures by inserting our
inception module between the last CNN (1× 1 convolution) layers. Empirical results
on three different datasets show reliable improvements not only in comparison to the
baseline networks, but also in comparison to several dense-pixel prediction techniques
such as CRFs, while being competitive in time.

7.1 Introduction

In this work, we propose a CNN architecture for semantic image segmentation. Given
an image x = (x1, . . . ,xN) with N pixels xi, the task of semantic segmentation is to infer
a labeling y = (y1, . . . ,yN) with a label yi ∈ Y for every pixel. This problem can be
naturally formulated as a structured prediction problem g : x→ y. Empirical performance
is measured by comparing y to a human labeled y∗ via a loss function ∆(y,y∗), e.g. with
the Intersection over Union (IoU) or pixel-wise Hamming Loss.
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(a) A common CNN architecture

BI BI

(b) CNN with Bilateral Inceptions

Figure 7.1: Illustration of CNN layout. We insert the Bilateral Inception (BI) modules
between the FC (1× 1 convolution) layers found in most networks thus removing the
necessity of further up-scaling algorithms. Bilateral Inception modules also propagate
information between distant pixels based on their spatial and color similarity and work
better than other label propagation approaches.

A direct way to approach this problem would be to ignore the structure of the output
variable y and train a classifier that predicts the class membership of the center pixel
of a given image patch. This procedure reduces the problem to a standard multi-class
classification problem and allows the use of standard learning algorithms. The resulting
classifier is then evaluated at every possible patch in a sliding window fashion (or using
coarse-to-fine strategies) to yield a full segmentation of the image. With high capacity
models and large amounts of training data, this approach would be sufficient, given that
the loss decomposes over the pixels. Such a per-pixel approach ignores the relation-
ship between the variables (y1, . . . ,yN), which are not i.i.d. since there is an underlying
common image. Therefore, besides learning discriminative per-pixel classifiers, most
segmentation approaches further encode the output relationship of y. A dominating ap-
proach is to use Conditional Random Fields (CRF) [155], which allows an elegant and
principled way to combine single pixel predictions and shared structure through unary,
pairwise and higher order factors.

What relates the outputs (y1, . . . ,yN)? The common hypothesis that we use in this
chapter could be summarized as: Pixels that are spatially and photometrically similar
are more likely to have the same label. Particularly if two pixels xi,x j are close in the
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image and have similar RGB values, then their corresponding labels yi,y j will most likely
be the same. The most prominent example of spatial similarity encoded in a CRF is the
Potts model (Ising model for the binary case). The work of [151] described a densely
connected pairwise CRF (DenseCRF) that includes pairwise factors encoding both spa-
tial and photometric similarity. The DenseCRF has been used in many recent works on
image segmentation which find also empirically improved results over pure pixel-wise
CNN classifiers [52, 25, 279, 51].

In this chapter, we implement the above-mentioned hypothesis of nearby pixels which
are photometrically similar sharing a common label, by designing a new ‘Bilateral In-
ception’ (BI) module that can be inserted before/after the last 1× 1 convolution layers
(which we refer to as ‘FC’ layers - ‘Fully-Connected’ in the original image classification
network) of the standard segmentation CNN architectures. The bilateral inception mod-
ule does edge-aware information propagation across different spatial CNN units of the
previous FC layer. Instead of using the spatial grid-layout that is common in CNNs, we
incorporate the superpixel-layout for information propagation. The information prop-
agation is performed using standard bilateral filters with Gaussian kernels, at different
feature scales. This construction is inspired by [242, 172]. Feature spaces and other
parameters of the modules can be learned end-to-end using standard back-propagation
techniques. The application of superpixels reduces the number of necessary computa-
tions and implements a long-range edge-aware inference between different superpixels.
Moreover, since superpixels provides an output at the full image resolution, it removes
the need for any additional post-processing step.

We introduce BI modules in the CNN segmentation models of [52, 279, 25]. See
Fig. 7.1 for an illustration. This achieves better segmentation results than the proposed
interpolation/inference techniques of DenseCRF [25, 52], on all three datasets that we
experimented with, while being faster. Moreover, the results compare favorably against
some recently proposed dense pixel prediction techniques. As illustrated in Fig. 7.1, the
BI modules provide an alternative approach to commonly used up-sampling and CRF
techniques.

7.2 Related Work

The literature on semantic segmentation is large and therefore we will limit our discus-
sion to those works that perform segmentation with CNNs and discuss the different ways
to encode the output structure.

A natural combination of CNNs and CRFs is to use the CNN as unary potential
and combine it with a CRF that also includes pairwise or higher order factors. For
instance [52, 25] observed large improvements in pixel accuracy when combining a
DenseCRF [151] with a CNN. The mean-field steps of the DenseCRF can be learned
and back-propagated as noted by [69] and implemented by [279, 134, 169, 220] for se-
mantic segmentation and [142] for human pose estimation. The works of [54, 170, 175]
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use CNNs also in pairwise and higher order factors for more expressiveness. The recent
work of [51] replaced the costly DenseCRF with a faster domain transform performing
smoothing filtering while predicting the image edge maps at the same time. Our work
was inspired by DenseCRF approaches but with the aim to replace the expensive mean-
field inference. Instead of propagating information across unaries obtained by a CNN,
we aim to do the edge-aware information propagation across intermediate representa-
tions of the CNN. Experiments on different datasets indicate that the proposed approach
generally gives better results in comparison to DenseCRF while being faster.

A second group of works aims to inject the structural knowledge in intermediate
CNN representations by using structural layers among CNN internal layers. The de-
convolution layers model from [276] are being widely used for local propagation of
information. They are computationally efficient and are used in segmentation networks,
e.g. [176]. They are however limited to small receptive fields. Another architecture pro-
posed in [110] uses spatial pyramid pooling layers to max-pool over different spatial
scales. The work of [126] proposed specialized structural layers such as normalized-cut
layers with matrix back-propagation techniques. All these works have either fixed local
receptive fields and/or have their complexity increasing exponentially with longer range
pixel connections. Our technique allows for modeling long range (super)pixel depen-
dencies without compromising the computational efficiency. A very recent work [273]
proposed the use of dilated convolutions for propagating multi-scale contextual informa-
tion among CNN units.

A contribution of this work is to define convolutions over superpixels by defining
connectivity among them. In [112], a method to use superpixels inside CNNs has been
proposed by re-arranging superpixels based on their features. The technique proposed
here is more generic and alleviates the need for rearranging superpixels. A method to
filter irregularly sampled data has been developed in [42] which may be applicable to
superpixel convolutions. The difference being that their method requires a pre-defined
graph structure for every example/image separately while our approach directly works
on superpixels. We experimented with Isomap embeddings [248] of superpixels but
for speed reasons opted for the more efficient kernels presented in this chapter. The
work of [187] extracted multi-scale features at each superpixel and performs semantic
segmentation by classifying each superpixel independently. In contrast, we propagate
information across superpixels by using bilateral filters with learned feature spaces.

Another core contribution of this work is the end-to-end trained bilateral filtering mod-
ule. Several recent works on bilateral filtering [21, 20] (including ours in Chapter 5)
back-propagate through permutohedral lattice approximation [7], to either learn the filter
parameters (Chapter 5) or do optimization in the bilateral space [21, 20]. Most of the
existing works on bilateral filtering use pre-defined feature spaces. In [47], the feature
spaces for bilateral filtering are obtained via a non-parametric embedding into an Eu-
clidean space. In contrast, by explicitly computing the bilateral filter kernel, we are able
to back-propagate through features, thereby learning the task-specific feature spaces for
bilateral filters through integration into end-to-end trainable CNNs.
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Figure 7.2: Superpixel Quantization Error. Best achievable segmentation performance
with a varying number of SLIC superpixels [6] on Pascal VOC12 segmentation [77] and
MINC material segmentation [25] datasets.

7.3 Bilateral Inception Networks

We first formally introduce superpixels in Sec. 7.3.1 before we describe the bilateral
inception modules in Sec. 7.3.2.

7.3.1 Superpixels

The term superpixel refers to a set of ni pixels si = {t1, . . . , tni} with tk ∈ {1, . . . ,N}
pixels. We use a set of M superpixels S = {s1, . . . ,sM} that are disjoint si∩ s j = /0,∀i, j
and decompose the image, ∪isi = I.

Superpixels have long been used for image segmentation in many previous works,
e.g. [99, 98, 193, 187], as they provide a reduction of the problem size. Instead of
predicting a label yi for every pixel xi, the classifier predicts a label yi per superpixel
Si and extends this label to all pixels within. A superpixel algorithm can pre-group pixels
based on spatial and photometric similarity, reducing the number of elements and also
thereby regularizing the problem in a meaningful way. The downside is that superpixels
introduce a quantization error whenever pixels within one segment have different ground
truth label assignments.

Figure 7.2 shows the superpixel quantization effect with the best achievable perfor-
mance as a function in the number of superpixels, on two different segmentation datasets:
PascalVOC [77] and Materials in Context [25]. We find that the quantization effect is
small compared to the current best segmentation performance. Practically, we use the
SLIC superpixels [6] for their runtime and [66] for their lower quantization error to de-
compose the image into superpixels. For details of the algorithms, please refer to the re-
spective papers. We use the publicly-available real-time GPU implementation of SLIC,
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Figure 7.3: Computation flow of the Gaussian bilateral filtering. We implemented
the bilateral convolution with five separate computation blocks. Λ and θ are the free
parameters.

called gSLICr [210], which runs at over 250 frames per second. And the publicly avail-
able Dollar superpixels code [66] computes a super-pixelization for a 400× 500 image
in about 300ms using an Intel Xeon 3.33GHz CPU.

7.3.2 Bilateral Inceptions

Next, we describe the Bilateral Inception (BI) module that performs Gaussian bilateral
filtering on multiple scales of the representations within a CNN. The BI module can be
inserted in between layers of existing CNN architectures.

Bilateral Filtering: We first describe the Gaussian bilateral filtering, the building
block of the BI module. A visualization of the necessary computations is shown in
Fig. 7.3. Let the previous layer CNN activations be z∈RP×C, that is P points and C filter
responses. With zc ∈ RP we denote the vector of activations of filter c. Additionally we
have for every point j a feature vector f j ∈ RD. This denotes its spatial position (D = 2,
not necessarily a grid), position and RGB color (D = 5), or others. Separate from the
input points with features Fin = {f1, . . . , fP}, we have Q output points with features Fout .
These can be the same set of points, but also fewer (Q < P), equal (Q = P), or more
(Q > P) points. For example we can filter a 10× 10 grid (P = 100) and produce the
result on a 50×50 grid (Q = 2500) or vice versa.

The bilateral filtered result will be denoted as ẑ ∈ RQ×C. We apply the same Gaus-
sian bilateral filter to every channel c separately. A filter has two free parameters: the
filter specific scale θ ∈ R+ and the global feature transformation parameters Λ ∈ RD×D.
For Λ, a more general scaling could be applied using more features or a separate CNN.
Technically the bilateral filtering amounts to a matrix-vector multiplication for all c:
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Figure 7.4: Visualization of a Bilateral Inception (BI) Module. The unit activations
z are passed through several bilateral filters defined over different feature spaces. The
result is linearly combined to z̄ and passed on to the next network layer. Also shown are
sample filtered superpixel images using bilateral filters defined over different example
feature spaces. (u,v) correspond to position and (r,g,b) correspond to color features.

ẑc = K(θ ,Λ,Fin,Fout)zc, (7.1)

where K ∈ RQ×P and values for fi ∈ Fout , f j ∈ Fin:

Ki, j =
exp(−θ‖Λfi−Λf j‖2)

∑ j′ exp(−θ‖Λfi−Λf j′‖2)
. (7.2)

From a kernel learning terminology, K is nothing but a Gaussian Gram matrix and it
is symmetric if Fin = Fout . We implemented this filtering in Caffe [136] using different
layers as depicted in Fig. 7.3. While approximate computations of Kzc exist and have
improved runtime [7, 199, 91, 8], we chose an explicit and exact computation of K due to
its small size. Our implementation makes use of the GPU and the intermediate pairwise
similarity computations are re-used across different modules. The entire runtime is only
a fraction of the CNN runtime, but of course applications to larger values of P and Q
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would require aforementioned algorithmic speed-ups.
Bilateral Inception Module: The bilateral inception module (BI) is a weighted com-

bination of different bilateral filters. We combine the output of H different filter ker-
nels K, with different scales θ 1, . . . ,θ H . All kernels use the same feature transforma-
tion Λ which allows for easier pre-computation of pairwise difference and avoids an
over-parametrization of the filters. The outputs of different filters ẑh are combined lin-
early to produce z̄:

z̄c =
H

∑
h=1

wh
c ẑh

c , (7.3)

using individual weights wh
c per scale θ h and channel c. The weights w ∈ RH×C are

learned using error back-propagation. The result of the inception module has C channels
for every of its Q points, thus z̄ ∈ RQ×C. The inception module is schematically illus-
trated in Fig. 7.4. In short, information from CNN layers below is filtered using bilateral
filters defined in a transformed feature space (Λf). Most operations in the inception mod-
ule are parallelizable, resulting in fast runtimes on a GPU. In this work, inspired from
the DenseCRF architecture from [151], we used pairs of BI modules: one with position
features (u,v) and another with both position and color features (u,v,r,g,b), each with
multiple scales {θ h}.

Motivation and Comparison to DenseCRF: A BI module filters the activations of a
CNN layer. Contrast this with the use of a DenseCRF on the CNN output. At that point
the fine-grained information that intermediate CNN layers represent has been condensed
already to a low-dimensional vector representing beliefs over labels. Using a mean-field
update is propagating information between these beliefs. Similar behavior is obtained
using the BI modules but on different scales (using multiple different filters K(θ h)) and
on the intermediate CNN activations z. Since in the end, the to-be-predicted pixels are
not i.i.d., this blurring leads to better performance both when using a bilateral filter as
an approximate message passing step of a DenseCRF as well as in the system outlined
here. Both attempts are encoding prior knowledge about the problem, namely that pixels
close in position and color are likely to have the same label. Therefore such pixels
can also have the same intermediate representation. Consider one would average CNN
representations for all pixels that have the same ground truth label. This would result
in an intermediate CNN representation that would be very easy to classify for the later
layers.

7.3.3 Superpixel Convolutions
The bilateral inception module allows to change how information is stored in the higher
level of a CNN. This is where the superpixels are used. Instead of storing information
on a fixed grid, we compute for every image, superpixels S and use the mean color and
position of their included pixels as features. We can insert bilateral inception modules to
change from grid representations to superpixel representations and vice versa. Inception
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modules in between superpixel layers convolve the unit activations between all super-
pixels depending on their distance in the feature space. This retains all properties of the
bilateral filter, superpixels that are spatially close and have a similar mean color will have
a stronger influence on each other.

Superpixels are not the only choice, in principle one can also sample random points
from the image and use them as intermediate representations. We are using superpixels
for computational reasons, since they can be used to propagate label information to the
full image resolution. Other interpolation techniques are possible, including the well
known bilinear interpolation, up-convolution networks [276], and DenseCRFs [151].
The quantization error mentioned in Sec. 7.3.1 only enters because the superpixels are
used for interpolation. Also note that a fixed grid, that is independent of the image is
a hard choice of where information should be stored. One could in principle evaluate
the CNN densely, at all possible spatial locations, but we found that this resulted in poor
performance compared to interpolation methods.

Back-propagation and Training.

All free parameters of the inception module w, {θ h} and Λ are learned via back-propagation.
We also back-propagate the error with respect to the module inputs thereby enabling the
integration of our inception modules inside CNN frameworks without breaking the end-
to-end learning paradigm. As shown in Fig. 7.3, the bilateral filtering can be decomposed
into 5 different sub-layers. Derivatives with respect to the open parameters are obtained
by the corresponding layer and standard back-propagation through the directed acyclic
graph. For example, Λ is optimized by back-propagating gradients through 1× 1 con-
volution. Derivatives for non-standard layers (pairwise similarity, matrix multiplication)
are straight forward to obtain using matrix calculus. To let different filters learn the in-
formation propagation at different scales, we initialized {θ h} with well separated scalar
values (e.g. {1,0.7,0.3, ...}). The learning is performed using the stochastic optimiza-
tion method of Adam [144]. The implementation is done in the Caffe neural network
framework [136], and the code is available at http://segmentation.is.tuebingen.mpg.de.

7.4 Experiments
We study the effect of inserting and learning bilateral inception modules in various exist-
ing CNN architectures. As a testbed, we perform experiments on semantic segmentation
using the Pascal VOC12 segmentation benchmark dataset [77], Cityscapes street scene
dataset [57] and on material segmentation using the Materials in Context (MINC) dataset
from [25]. We take different CNN architectures from the works of [52, 279, 25] and in-
sert the inception modules before and/or after the spatial FC layers. In Appendix A.5,
we presented some quantitative results with approximate bilateral filtering using the per-
mutohedral lattice [7].
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(a) Input (b) Superpixels (c) GT (d) Deeplab (e) +DenseCRF (f) Using BI

Figure 7.5: Semantic segmentation. Example results of semantic segmentation on Pas-
cal VOC12 dataset. (d) depicts the DeepLab CNN result, (e) CNN + 10 steps of mean-
field inference, (f) result obtained with bilateral inception (BI) modules (BI6(2)+BI7(6))
between FC layers.

7.4.1 Semantic Segmentation
We first use the Pascal VOC12 segmentation dataset [77] with 21 object classes. For
all experiments on VOC12, we train using the extended training set of 10581 images
collected by [108]. Following [279], we use a reduced validation set of 346 images
for validation. We experiment on two different network architectures, (a) The DeepLab
model from [52] which uses a CNN followed by DenseCRF and (b) The CRFasRNN
model from [279] which uses a CNN with deconvolution layers followed by DenseCRF
trained end-to-end.

DeepLab

We use the publicly available state-of-the-art pre-trained CNN models from [52]. We
use the DeepLab-LargeFOV variant as a base architecture and refer to it as ‘DeepLab’.
The DeepLab CNN model produces a lower resolution prediction (1

8×) which is then
bilinearly interpolated to the input image resolution. The original models have been fine-
tuned using both the MSCOCO [173] and the extended VOC [108] datasets. Next, we
describe modifications to these models and show performance improvements in terms of
both IoU and runtimes.

We add inception modules after different FC layers in the original model and re-
move the DenseCRF post processing. For this dataset, we use 1000 SLIC superpix-
els [6, 210]. The inception modules after FC6, FC7 and FC8 layers are referred to as
BI6(H), BI7(H) and BI8(H) respectively, where H is the number of kernels. All results
using the DeepLab model on Pascal VOC12 dataset are summarized in Tab. 7.1. We re-
port the ‘test’ numbers without validation numbers, because the released DeepLab model
that we adapted was trained using both train and validation sets. The DeepLab network
achieves an IoU of 68.9 after bilinear interpolation. Experiments with the BI6(2) mod-
ule indicate that even only learning the inception module while keeping the remaining
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Model Training IoU Runtime(ms)

DeepLab [52] 68.9 145

With BI modules
BI6(2) only BI 70.8 +20
BI6(2) BI+FC 71.5 +20
BI6(6) BI+FC 72.9 +45
BI7(6) BI+FC 73.1 +50
BI8(10) BI+FC 72.0 +30
BI6(2)-BI7(6) BI+FC 73.6 +35
BI7(6)-BI8(10) BI+FC 73.4 +55
BI6(2)-BI7(6) FULL 74.1 +35
BI6(2)-BI7(6)-CRF FULL 75.1 +865

DeepLab-CRF [52] 72.7 +830
DeepLab-MSc-CRF [52] 73.6 +880
DeepLab-EdgeNet [51] 71.7 +30
DeepLab-EdgeNet-CRF [51] 73.6 +860

Table 7.1: Semantic segmentation using DeepLab model. IoU scores on Pascal
VOC12 segmentation test dataset and average runtimes (ms) corresponding to different
models. Also shown are the results corresponding to competitive dense pixel prediction
techniques that used the same base DeepLab CNN. Runtimes also include superpixel
computation (6ms). In the second column, ‘BI’, ‘FC’ and ‘FULL’ correspond to training
‘BI’, ‘FC’ and full model layers respectively.

network fixed results in a reliable IoU improvement (+1.9). Additional joint training
with FC layers significantly improved the performance. The results also show that more
kernels improve performance. Next, we add multiple modules to the base DeepLab net-
work at various stages and train them jointly. This results in further improvement of the
performance. The BI6(2)-BI7(6) model with two inception modules shows significant
improvement in IoU by 4.7 and 0.9 in comparison to the baseline model and Dense-
CRF application respectively. Finally, fine-tuning the entire network (FULL in Tab. 7.1)
boosts the performance by 5.2 and 1.4 compared to the baseline and DenseCRF applica-
tion.

Some visual results are shown in Fig. A.14 and more are included in Appendix A.5.2.
Several other variants of using BI are conceivable. During our experiments, we have ob-
served that more kernels and more modules improve the performance, so we expect that
even better results can be achieved. In Tab. 7.1, the runtime in milliseconds is included
for several models. These numbers have been obtained using a Nvidia Tesla K80 GPU
and standard Caffe time benchmarking [136]. DenseCRF timings are taken from [51].
The runtimes indicate that the overhead with BI modules is quite minimal in comparison
to using Dense CRF.
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Model IoU Runtime(ms)

DeconvNet(CNN+Deconv.) 72.0 190

With BI modules
BI3(2)-BI4(2)-BI6(2)-BI7(2) 74.9 245

CRFasRNN (DeconvNet-CRF) 74.7 2700

Table 7.2: Semantic segmentation using CRFasRNN model. IoU scores and runtimes
corresponding to different models on Pascal VOC12 test dataset. Note that runtime also
includes superpixel computation.

In addition, we include the results of some other dense pixel prediction methods that
are build on top of the same DeepLab base model. DeepLab-MSc-CRF is a multi-scale
version [52] of DeepLab with DenseCRF on top. DeepLab-EdgeNet [51] is a recently
proposed fast and discriminatively trained domain transform technique for propagating
information across pixels. Comparison with these techniques in terms of performance
and runtime indicates that our approach performs on par with latest dense pixel prediction
techniques with significantly less time overhead. Several state-of-the-art CNN based
systems [170, 175] have achieved higher results than DeepLab on Pascal VOC12. These
models are not yet publicly available and so we could not test the use of BI models
in them. A close variant [21] of our work, which propose to do optimization in the
bilateral space also has fast runtimes, but reported lower performance in comparison to
the application of DenseCRF.

CRFasRNN

As a second architecture, we modified the CNN architecture trained by [279] that pro-
duces a result at an even lower resolution ( 1

16×). Multiple deconvolution steps are
employed to obtain the segmentation at input image resolution. This result is then
passed onto the DenseCRF recurrent neural network to obtain the final segmentation
result. We insert BI modules after score-pool3, score-pool4, FC6 and FC7 layers, please
see [176, 279] for the network architecture details. Instead of combining outputs from
the above layers with deconvolution steps, we introduce BI modules after them and lin-
early combined the outputs to obtain a final segmentation result. Note that we entirely
removed both the deconvolution and the DenseCRF parts of the original model [279].
See Tab. 7.2 for results on the DeconvNet model. Without the DenseCRF part and only
evaluating the deconvolutional part of this model, one obtains an IoU score of 72.0. Ten
steps of mean field inference increase the IoU to 74.7 [279]. Our model, with few ad-
ditional parameters compared to the base CNN, achieves a IoU performance of 74.9,
showing an improvement of 0.2 over the CRFasRNN model. The BI layers lead to better
performance than deconvolution and DenseCRF combined while being much faster.
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Figure 7.6: Hierarchical clustering analysis. From left to right: Validation performance
when using different super-pixel layouts, visualization of an image with ground truth
segmentation, and the BI6(2)-BI7(6) result with 200, 600, and 1000 superpixels.

Hierarchical Clustering Analysis

We learned the network parameters using 1000 gSLIC superpixels per image, however
the inception module allows to change the resolution (a non-square K). To illustrate this,
we perform agglomerative clustering of the superpixels, sequentially merging the nearest
(in spatial and photometric features) two superpixels into a single one. We then evaluated
the DeepLab-BI6(2)-BI7(6) network using different levels of the resulting hierarchy re-
using all the trained network parameters. Results in Fig. 7.6 show that the IoU score
on the validation set decreases slowly with decreasing number of points and then drops
for less than 200 superpixels. This validates that the network generalizes to different
superpixel layouts and it is sufficient to represent larger regions of similar color by fewer
points. In future, we plan to explore different strategies to allocate the representation to
those regions that require more resolution and to remove the superpixelization altogether.
Fig. 7.6 shows example image with 200, 600, and 1000 superpixels and their obtained
segmentation with BI modules.

7.4.2 Material Segmentation

We also experiment on a different pixel prediction task of material segmentation by
adapting a CNN architecture fine-tuned for Materials in Context (MINC) [25] dataset.
MINC consists of 23 material classes and is available in three different resolutions with
the same aspect ratio: low (5502), mid (11002) and an original higher resolution. The
authors of [25] train CNNs on the mid resolution images and then combine with a Dense-
CRF to predict and evaluate on low resolution images. We build our work based on the
AlexNet model [152] released by the authors of [25]. To obtain a per pixel labeling of a
given image, there are several processing steps that [25] use for good performance. First,
a CNN is applied at several scales with different strides followed by an interpolation of
the predictions to reach the input image resolution and is then followed by a DenseCRF.
For simplicity, we choose to run the CNN network with single scale. The authors used
just one kernel with (u,v,L,a,b) features in the DenseCRF part. We used the same fea-
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Model Class / Total accuracy Runtime(ms)

AlexNet CNN 55.3 / 58.9 300

BI7(2)-BI8(6) 67.7 / 71.3 410
BI7(6)-BI8(6) 69.4 / 72.8 470

AlexNet-CRF 65.5 / 71.0 3400

Table 7.3: Material segmentation using AlexNet. Pixel accuracies and runtimes (in
ms) of different models on the MINC material segmentation dataset [25]. Runtimes also
include the time for superpixel extraction (15ms).

(a) Input (b) Superpixels (c) GT (d) AlexNet (e) +DenseCRF (f) Using BI

Figure 7.7: Material segmentation. Example results of material segmentation. (d) de-
picts the AlexNet CNN result, (e) CNN + 10 steps of mean-field inference, (f) results
obtained with bilateral inception (BI) modules (BI7(2)+BI8(6)) between FC layers.

tures in our inception modules. We modified the base AlexNet model by inserting BI
modules after FC7 and FC8 layers. Again, 1000 SLIC superpixels are used for all exper-
iments. Results on the test set are shown in Table 7.3. When inserting BI modules, the
performance improves both in total pixel accuracy as well as in class-averaged accuracy.
We observe an improvement of 12% compared to CNN predictions and 2− 4% com-
pared to CNN+DenseCRF results. Qualitative examples are shown in Fig. 7.7 and more
are included in Appendix A.5.2. The weights to combine outputs in the BI layers are
found by validation on the validation set. For this model we do not provide any learned
setup due to very limited segment training data.

7.4.3 Street Scene Segmentation
We further evaluate the use of BI modules on the Cityscapes dataset [57]. Cityscapes
contains 20K high-resolution (1024× 2048) images of street scenes with coarse pixel
annotations and another 5K images with fine annotations, all annotations are from 19
semantic classes. The 5K images are divided into 2975 train, 500 validation and remain-
ing test images. Since there are no publicly available pre-trained models for this dataset
yet, we trained a DeepLab model. We trained the base DeepLab model with half reso-
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Model IoU (Half-res.) IoU (Full-res.) Runtime(s)

DeepLab CNN 62.2 65.7 0.3

BI6(2) 62.7 66.5 5.7
BI6(2)-BI7(6) 63.1 66.9 6.1

DeepLab-CRF 63.0 66.6 6.9

Table 7.4: Street scene Segmentation using DeepLab model. IoU scores and runtimes
(in sec) of different models on Cityscapes segmentation dataset [57], for both half-
resolution and full-resolution images. Runtime computations also include superpixel
computation time (5.2s).

(a) Input (b) Superpixels (c) GT (d) Deeplab (e) Using BI

Figure 7.8: Street scene segmentation. Example results of street scene segmentation.
(d) depicts the DeepLab results, (e) result obtained by adding bilateral inception (BI)
modules (BI6(2)+BI7(6)) between FC layers.

lution images (512× 1024) so that the model fits into GPU memory. The result is then
interpolated to full-resolution using bilinear interpolation.

We experimented with two layouts: only a single BI6(2) and one with two inception
BI6(2)-BI7(6) modules. We notice that the SLIC superpixels [6] give higher quantization
error than on VOC and thus used 6000 superpixels using [66] for our experiments. Quan-
titative results on the validation set are shown in Tab. 7.4. In contrast to the findings on
the previous datasets, we only observe modest improvements with both DenseCRF and
our inception modules in comparison to the base model. Similar to the previous exper-
iments, the inception modules achieve better performance than DenseCRF while being
faster. The majority of the computation time in our approach is due to the extraction of
superpixels (5.2s) using a CPU implementation. Some visual results with BI6(2)-BI7(6)
model are shown in Fig. 7.8 with more in Appendix A.5.2.

7.5 Discussion and Conclusions
The DenseCRF [151] with mean field inference has been used in many CNN segmenta-
tion approaches. Its main ingredient and reason for the improved performance is the use
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of a bilateral filter applied to the beliefs over labels. We have introduced a CNN approach
that uses this key component in a novel way: filtering intermediate representations of
higher levels in CNNs while jointly learning the task-specific feature spaces. This prop-
agates information between earlier and more detailed intermediate representations of the
classes instead of beliefs over labels. Further we show that image adaptive layouts in the
higher levels of CNNs can be used to an advantage in the same spirit as CRF graphs have
been constructed using superpixels in previous works on semantic segmentation. The
computations in the 1×1 convolution layers scales in the number of superpixels which
may be an advantage. Further we have shown that the same representation can be used
to interpolate the coarser representations to the full image.

The use of image-adaptive convolutions in between the FC layers retains the appealing
effect of producing segmentation masks with sharp edges. This is not a property of the
superpixels, using them to represent information in FC layers and their use to interpolate
to the full resolution are orthogonal. Different interpolation steps can be used to propa-
gate the label information to the entire image, including bilinear interpolation, bilateral
upsampling, up-convolutions and DenseCRFs. We plan to investigate the effect of differ-
ent sampling strategies to represent information in the higher layers of CNNs and apply
similar image-adaptive ideas to videos.

We believe that the Bilateral Inception models are an interesting step that aims to di-
rectly include the model structure of CRF factors into the forward architecture of CNNs.
The BI modules are easy to implement and are applicable to CNNs that perform struc-
tured output prediction.
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Conclusions and Outlook

Generative models provide a strong set of tools for modeling the vision world around
us. But their use in computer vision is hampered by the complexity of inference in them
causing the vision community to favor data-hungry discriminative models. Both gener-
ative and discriminative models have complementary advantages and disadvantages as
discussed in Chapter 2. Generative models provide an easy handle for incorporating
prior knowledge about the task but inference is often too complex in them. Discrimi-
native models, on the other hand, have a straightforward inference scheme as forward
evaluation of models, but lack principled ways of incorporating prior knowledge into
them.

This thesis work proposed techniques for alleviating some of the key issues with
prominent computer vision models by improving inference in them. A common strat-
egy that is followed across several techniques proposed in this thesis is leveraging the
complementary models for better inference in a given model. That is, we leverage dis-
criminative models for better inference in generative computer vision models. And we
used generative knowledge (in the form of bilateral filters) and enriched the existing dis-
criminative CNN models. This way, this thesis made important steps in bridging the
gap between generative and discriminative vision models. The proposed inference tech-
niques are flexible enough to deal with different task scenarios (e.g., availability of large
or small amounts of data).

Inference in Generative Vision Models In the case of generative models, we leverage
discriminative clustering or random forests techniques to accelerate and/or to improve
the Bayesian inference. In Chapter 3, we proposed a new sampling technique called
‘Informed Sampler’, where discriminative models help in better exploration of target do-
main, via informed proposals, while doing MCMC sampling. In Chapter 4, we proposed
a new message passing technique called ‘Consensus Message Passing’ where random
forest predictors are used for predicting consensus messages during standard message
passing inference resulting in convergence to better solutions.

In both ‘Informed Sampler’ and ‘Consensus Message Passing’ (CMP), we made sure
that the theoretical guarantees that come with the well established inference techniques
are not violated with our modified inference schemes. In the informed sampler, we
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achieve this by injecting discriminative knowledge in MCMC sampling via proposal
distributions and adhering to detailed balance condition while sampling. And in consen-
sus message passing, we used consensus messages from discriminative predictors only
during the first few iterations ensuring that the fixed point reached by our modified infer-
ence is also a fixed point of standard message passing in the model. We evaluated both
the informed sampler and CMP techniques on three different generative models each,
reflecting a wide range of problem scenarios, where we consistently observed improved
inference with the proposed techniques in comparison to standard sampling and message
passing inference techniques.

Inference in Discriminative Vision Models In this thesis, we focus on the inference
in prominent CNN models. Spatial convolutions form the basic building block of most
CNN architectures. A key observation in this thesis work is that the bilateral filters [15,
251] are a generalization of spatial convolutions and do not have many of the limitations
that spatial convolutions have. The key issue with the existing use of bilateral filters is
they are confined to fixed hand-tuned parameterization.

In Chapter 5, we proposed a generalized bilateral filter and devised a gradient based
technique for learning the filter parameters. Experiments on wide range of problems
showed the superior performance of learnable bilateral filters with respect to using Gaus-
sian filter kernel. Learnable bilateral filters enabled us to stack several filters together and
learn all of them via back-propagation. Using this, we proposed novel neural network
architectures which we call ‘Bilateral Neural Networks’ (BNN).

In Chapter 6, we showed how BNNs can be easily adapted to filter video data for
propagating temporal information across video frames. In Chapter 7, we proposed new
and fast neural network modules, based on explicit Gaussian bilateral filtering called
‘Bilateral Inceptions’ and showcased how we can modify existing segmentation CNN
architectures for big improvements in accuracy while adding little time overhead.

Bilateral filters form the core of mean-field inference in DenseCRF models [151] and
provide a way to incorporate prior knowledge about the scene in the form of dense
feature-based connectivity across the pixels. By integrating learnable bilateral filters into
standard CNN architectures, we brought the worlds of CRF and CNN closer, providing
a way to incorporate prior knowledge into CNNs.

8.1 Summary of Contributions
The following list summarizes the specific contributions of this thesis work:

• We devised a novel MCMC sampling approach called ‘Informed Sampler’ (Chap-
ter 3) for doing Bayesian inference in complex generative vision models. The In-
formed sampler leverages discriminative approaches for improving the efficiency
of MCMC sampling. Experiments on a wide range of generative vision models
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showed significantly faster convergence of our sampler while maintaining higher
acceptance rates. This opens up possibilities for using complex generative models
like graphics engines for addressing vision problems.

• We devised a novel message passing technique called ‘Consensus Message Pass-
ing (CMP), in Chapter 4, for doing Bayesian inference in layered graphical mod-
els used in vision. Experiments on diverse graphical models in vision showed that
CMP resulted in significantly better performance compared to standard message
passing techniques such as expectation propagation or variational message pass-
ing. Moreover, CMP is the first instance where the Infer.NET [186] probabilistic
programming language is shown to be useful for addressing vision problems.

• We parameterized bilateral filters as general sparse high dimensional filters (Chap-
ter 5) and devised an approach for learning the filter kernels via standard back-
propagation learning techniques. This resulted in a general technique for learning
sparse high-dimensional filters, which in turn resulted in a generalization of stan-
dard bilateral filters. Experiments on wide range of applications showed improved
performance with respect to standard Gaussian bilateral filters.

• We also show how learning bilateral filters can generalize the fully-connected con-
ditional random field models (DenseCRF) to arbitrarily learned pairwise potentials
(Section 5.5) instead of standard Gaussian pairwise edge potentials. DenseCRF is
one of the widely used CRF techniques in vision and this generalization carries
forward to most of its existing applications and helps in better integration into
end-to-end trained models like convolutional neural networks (CNN).

• Our technique for learning general sparse high dimensional filters also generalizes
standard spatial convolutions in CNN frameworks. This opens up possibilities
for applying CNNs to sparse high-dimensional data, which is not feasible with
many standard CNN techniques. Moreover, our technique can be used for learning
image-adaptive filters inside CNNs instead of standard image-agnostic 2D filters.

• We adapted the learnable sparse high dimensional filters for video filtering, in
Chapter 6, and proposed a novel neural network approach for propagating content
across video frames. We call our networks ‘Video Propagation Networks’ (VPN).
Experiments on video object segmentation and semantic video segmentation showed
that VPN outperformed existing task-specific methods while being faster.

• In Chapter 7, we devised a new CNN module called ‘Bilateral Inception’ that can
be readily inserted into standard segmentation CNN models resulting in better
performance while producing the result at original image resolution and also al-
leviating some of the need for post-processing. Experiments on state-of-the-art
CNN models resulted in significantly better performance with our inception mod-
ule while being competitive in time.
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8.2 Outlook

With the diverse range of experiments on each proposed technique, I hope to have con-
vinced the readers that this thesis work resulted in several important advances for in-
ference in computer vision models. Inference in computer vision models is still a very
active area of research and I hope the work presented in this thesis aids in further ad-
vances in this area of research. The following are some of the research topics that could
benefit from the concepts and techniques presented in this thesis.

Leveraging Photo-Realistic Graphics for Vision: As discussed in Section 2.2.1, mod-
ern graphics engines leverage dedicated hardware setups and provide real-time render-
ings with stunning level of realism. This is made possible with accurate modeling of
image formation. Such realistic graphics models are seldom utilized in building vision
systems due to the difficulty in posterior inference. The informed sampler (Chapter 3)
and consensus message passing (Chapter 4) techniques presented in this thesis made im-
portant steps in making the inference faster. But the proposed techniques are still not
fast enough for practical purposes. An important research direction is to further improve
the efficiency of inference by making use of the internals of state-of-the-art rendering
mechanisms such as Metropolis Light Transport [260]. One way to achieve this is by
improving MCMC sampling efficiency via pre-rejection using the rejection technique
of [149], without the need for doing full rendering for the rejected samples in MCMC.
This would result in a better coupling of graphics and Bayesian vision systems.

CNNs for Sparse 3D Data: In recent years, there is an increasing need for techniques
that efficiently process 3D data, with the onset of cheaper 3D scanners and the con-
sumer devices that requires processing 3D data (e.g. virtual reality devices such as Ocu-
lus Rift [5]). One of the distinguishing characters of high-dimensional data such as 3D
point clouds or videos is that they are sparse. 3D point clouds are inherently sparse
and the sparsity of video data comes from the redundant representation across frames.
Learnable bilateral filters proposed in this thesis (Chapter 5), provide a principled way
to process sparse high-dimensional data by enabling long-range data dependent connec-
tions. This thesis work also demonstrated that one could easily integrate these sparse
high-dimensional filters into other CNN architectures and are also shown to be fruitful
for video processing (Chapter 6). I hope this thesis work inspires future research work
for efficiently processing 3D data such as point clouds or meshes. Since the convolutions
are performed in bilateral space with sparsely populated cells, there is no need to vox-
elize a given point cloud or meshes for doing 3D convolutions. One of the limitations
of bilateral neural networks is that the bilateral feature scales are hand-tuned. There are
other recent works such as [150, 154] trying to optimize feature spaces for bilateral filter-
ing but are not integrated into CNN frameworks. An interesting future research direction
is to bring these works together by learning feature spaces for bilateral neural networks
in an end-to-end fashion.
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Structured CNNs: Although images are represented with independent pixel values,
real world is highly structured and prior knowledge therein can be captured by rich mod-
eling tools like graphical models. For example, in the case of urban scene understanding,
one could leverage the prior knowledge that objects like cars and persons stand on the
ground plane; building facades are vertical etc. Most of the existing CNN frameworks
are agnostic to such explicit prior information. One may argue that the CNNs are capable
of implicitly learning such prior knowledge directly from the training data. But, in prac-
tice, the amount of labelled training data is always limited and thus CNNs need external
prior constraints to be able to perform well on several real world problems especially
when the training data is very limited. In this thesis, we developed techniques for incor-
porating prior knowledge into CNNs via learnable bilateral filters. Such prior knowledge
is low-level and, ideally I would like to have techniques for integrating high-level prior
knowledge (e.g., the prior knowledge that is encoded in graphical models). Other exist-
ing works in this direction (e.g. [129, 279, 252, 48]) are also either limited in the type of
prior knowledge they model and/or graphical model constraints are generally enforced
after the main CNN structure. I believe that a fruitful direction to tackle this problem
is developing structured filters that can be easily integrated into CNN frameworks. The
work presented in this thesis make important steps in this direction.

On Combining Generative and Discriminative Models: Hybrid generative and dis-
criminative models are an active area of research and I believe that the future of computer
vision would be dominated by such hybrid models which are scalable and generic to be
applicable to a wide range of problem scenarios. In Section 2.4, we discussed several
recent works that aim to develop such hybrid models. Several inference techniques pre-
sented in this thesis are based on the synergistic combinations of generative and discrim-
inative models. I hope that this thesis work inspires or aids in the further development of
hybrid generative and discriminative vision models.
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Appendix A

Supplementary Material

In this appendix, we present supplementary material for the techniques and experiments
presented in the main text.

A.1 Baseline Results and Analysis for Informed Sampler
Here, we give an in-depth performance analysis of the various samplers and the effect
of their hyperparameters. We choose hyperparameters with the lowest PSRF value after
10k iterations, for each sampler individually. If the differences between PSRF are not
significantly different among multiple values, we choose the one that has the highest
acceptance rate.

A.1.1 Experiment: Estimating Camera Extrinsics

Parameter Selection

Metropolis Hastings (MH) Figure A.1a shows the median acceptance rates and PSRF
values corresponding to various proposal standard deviations of plain MH sampling.
Mixing gets better and the acceptance rate gets worse as the standard deviation increases.
The value 0.3 is selected standard deviation for this sampler.

Metropolis Hastings Within Gibbs (MHWG) As mentioned in Section 3.5.1, the
MHWG sampler with one-dimensional updates did not converge for any value of pro-
posal standard deviation. This problem has high correlation of the camera parameters
and is of multi-modal nature, which this sampler has problems with.

Parallel Tempering (PT) For PT sampling, we took the best performing MH sampler
and used different temperature chains to improve the mixing of the sampler. Figure A.1b
shows the results corresponding to different combination of temperature levels. The
sampler with temperature levels of [1,3,27] performed best in terms of both mixing and
acceptance rate.
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Effect of Mixture Coefficient in Informed Sampling (INF-MH) Figure A.1c shows
the effect of mixture coefficient (α) on the informed sampling INF-MH. Since there is
no significant different in PSRF values for 0 ≤ α ≤ 0.7, we chose 0.7 due to its high
acceptance rate.

(a) MH (b) PT

(c) INF-MH

Figure A.1: Results of the ‘Estimating Camera Extrinsics’ experiment. PRSFs and
Acceptance rates corresponding to (a) various standard deviations of MH, (b) various
temperature level combinations of PT sampling and (c) various mixture coefficients of
INF-MH sampling.

A.1.2 Experiment: Occluding Tiles
Parameter Selection

Metropolis Hastings (MH) Figure A.2a shows the results of MH sampling. Results
show the poor convergence for all proposal standard deviations and rapid decrease of
AR with increasing standard deviation. This is due to the high-dimensional nature of the
problem. We selected a standard deviation of 1.1.

Blocked Metropolis Hastings Within Gibbs (BMHWG) The results of BMHWG
are shown in Figure A.2b. In this sampler we update only one block of tile variables (of
dimension four) in each sampling step. Results show much better performance compared
to plain MH. The optimal proposal standard deviation for this sampler is 0.7.

Metropolis Hastings Within Gibbs (MHWG) Figure A.2c shows the result of MHWG
sampling. This sampler is better than BMHWG and converges much more quickly. Here
a standard deviation of 0.9 is found to be best.
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(a) MH (b) BMHWG

(c) MHWG (d) PT

(e) INF-BMHWG

Figure A.2: Results of the ‘Occluding Tiles’ experiment. PRSF and Acceptance rates
corresponding to various standard deviations of (a) MH, (b) BMHWG, (c) MHWG, (d)
various temperature level combinations of PT sampling and; (e) various mixture coeffi-
cients of our informed INF-BMHWG sampling.

Parallel Tempering (PT) Figure A.2d shows the results of PT sampling with various
temperature combinations. Results show no improvement in AR from plain MH sam-
pling and again [1,3,27] temperature levels are found to be optimal.

Effect of Mixture Coefficient in Informed Sampling (INF-BMHWG) Figure A.2e
shows the effect of mixture coefficient (α) on the blocked informed sampling INF-
BMHWG. Since there is no significant different in PSRF values for 0 ≤ α ≤ 0.8, we
chose 0.8 due to its high acceptance rate.

A.1.3 Experiment: Estimating Body Shape

Parameter Selection

Metropolis Hastings (MH) Figure A.3a shows the result of MH sampling with various
proposal standard deviations. The value of 0.1 is found to be best.
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(a) MH (b) MHWG

(c) PT (d) INF-MH

Figure A.3: Results of the ‘Body Shape Estimation’ experiment. PRSFs and Accep-
tance rates corresponding to various standard deviations of (a) MH, (b) MHWG; (c) vari-
ous temperature level combinations of PT sampling and; (d) various mixture coefficients
of the informed INF-MH sampling.

Metropolis Hastings Within Gibbs (MHWG) For MHWG sampling we select 0.3
proposal standard deviation. Results are shown in Fig. A.3b.

Parallel Tempering (PT) As before, results in Fig. A.3c, the temperature levels were
selected to be [1,3,27] due its slightly higher AR.

Effect of Mixture Coefficient in Informed Sampling (INF-MH) Figure A.3d shows
the effect of α on PSRF and AR. Since there is no significant differences in PSRF values
for 0≤ α ≤ 0.8, we choose 0.8.

A.1.4 Results Overview
Figure A.4 shows the summary results of the all the three experimental studies related to
informed sampler.

A.1.5 Additional Qualitative Results
Occluding Tiles

In Figure A.5 more qualitative results of the occluding tiles experiment are shown. The
informed sampling approach (INF-BMHWG) is better than the best baseline (MHWG).
This still is a very challenging problem since the parameters for occluded tiles are flat
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(a) Results for: Estimating Camera Extrinsics

(b) Results for: Occluding Tiles

(c) Results for: Estimating Body Shape

Figure A.4: Summary of the statistics for the three experiments. Shown are for sev-
eral baseline methods and the informed samplers the acceptance rates (left), PSRFs (mid-
dle), and RMSE values (right). All results are median results over multiple test examples.

over a large region. Some of the posterior variance of the occluded tiles is already cap-
tured by the informed sampler.

Body Shape

Figure A.6 shows some more results of 3D mesh reconstruction using posterior samples
obtained by our informed sampling INF-MH.
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Figure A.5: Additional qualitative results of the occluding tiles experiment. From
left to right: (a) Given image, (b) Ground truth tiles, (c) OpenCV heuristic and most
probable estimates from 5000 samples obtained by (d) MHWG sampler (best baseline)
and (e) our INF-BMHWG sampler. (f) Posterior expectation of the tiles boundaries
obtained by INF-BMHWG sampling (First 2000 samples are discarded as burn-in).
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Figure A.6: Qualitative results for the body shape experiment. Shown is the 3D mesh
reconstruction results with first 1000 samples obtained using the INF-MH informed sam-
pling method. (blue indicates small values and red indicates high values)
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A.2 Additional Results on the Face Problem with CMP
Figure A.7 shows inference results for reflectance maps, normal maps and lights for ran-
domly chosen test images, and Fig. A.8 shows reflectance estimation results on multiple
images of the same subject produced under different illumination conditions. CMP is
able to produce estimates that are closer to the groundtruth across different subjects and
illumination conditions.

(a) Observed (b) Reflectance (c) Variance (d) Light (e) Normal︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

‘GT’ BU MP Forest CMP CMP ‘GT’ MP Forest CMP ‘GT’ MP CMP

Figure A.7: A visual comparison of inference results. (a) Observed images. (b) In-
ferred reflectance maps. GT is the photometric stereo groundtruth, BU is the Biswas
et al. (2009) reflectance estimate and Forest is the consensus prediction. (c) The variance
of the inferred reflectance estimate produced by CMP (normalized across rows).(d) Vi-
sualization of inferred light directions. (e) Inferred normal maps.

Observed ‘GT’ BU MP Forest CMP Variance

Figure A.8: Robustness to varying illumination. Reflectance estimation on a subject
images with varying illumination. Left to right: observed image, photometric stereo
estimate (GT) which is used as a proxy for groundtruth, bottom-up estimate of [27],
VMP result, consensus forest estimate, CMP mean, and CMP variance.
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A.3 Additional Material for Learning Sparse High
Dimensional Filters

This part of supplementary material contains a more detailed overview of the permuto-
hedral lattice convolution in Section A.3.1, more experiments in Section A.3.2 and addi-
tional results with protocols for the experiments presented in Chapter 5 in Section A.3.3.

A.3.1 General Permutohedral Convolutions

A core technical contribution of this work is the generalization of the Gaussian permuto-
hedral lattice convolution proposed in [7] to the full non-separable case with the ability to
perform back-propagation. Although, conceptually, there are minor differences between
Gaussian and general parameterized filters, there are non-trivial practical differences in
terms of the algorithmic implementation. The Gauss filters belong to the separable class
and can thus be decomposed into multiple sequential one dimensional convolutions. We
are interested in the general filter convolutions, which can not be decomposed. Thus,
performing a general permutohedral convolution at a lattice point requires the compu-
tation of the inner product with the neighboring elements in all the directions in the
high-dimensional space.

Here, we give more details of the implementation differences of separable and non-
separable filters. In the following, we will explain the scalar case first. Recall, that the
forward pass of general permutohedral convolution involves 3 steps: splatting, convolv-
ing and slicing. We follow the same splatting and slicing strategies as in [7] since these
operations do not depend on the filter kernel. The main difference between our work and
the existing implementation of [7] is the way that the convolution operation is executed.
This proceeds by constructing a blur neighbor matrix K that stores for every lattice point
all values of the lattice neighbors that are needed to compute the filter output.

The blur neighbor matrix is constructed by traversing through all the populated lattice
points and their neighboring elements. This is done recursively to share computations.
For any lattice point, the neighbors that are n hops away are the direct neighbors of the
points that are n−1 hops away. The size of a d dimensional spatial filter with width s+1
is (s+ 1)d (e.g., a 3× 3 filter, s = 2 in d = 2 has 32 = 9 elements) and this size grows
exponentially in the number of dimensions d. The permutohedral lattice is constructed
by projecting a regular grid onto the plane spanned by the d dimensional normal vector
(1, . . . ,1)>. See Fig. A.9 for an illustration of the 1D lattice construction. Many corners
of a grid filter are projected onto the same point, in total t =(s+1)d−sd elements remain
in the permutohedral filter with s neighborhood in d− 1 dimensions. If the lattice has
m populated elements, the matrix K has size t×m. Note that, since the input signal is
typically sparse, only a few lattice corners are being populated in the slicing step. We use
a hash-table to keep track of these points and traverse only through the populated lattice
points for this neighborhood matrix construction.
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(1, 1)
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Figure A.9: Illustration of 1D permutohedral lattice construction. A 4×4 (x,y) grid
lattice is projected onto the plane defined by the normal vector (1,1)>. This grid has
s+ 1 = 4 and d = 2 (s+ 1)d = 42 = 16 elements. In the projection, all points of the
same color are projected onto the same points in the plane. The number of elements of
the projected lattice is t = (s+1)d− sd = 42−32 = 7, that is the (4×4) grid minus the
size of lattice that is 1 smaller at each size, in this case a (3×3) lattice (the upper right
(3×3) elements).

Once the blur neighbor matrix K is constructed, we can perform the convolution by
the matrix vector multiplication

`′ = BK, (A.1)

where B is the 1×t filter kernel (whose values we will learn) and `′ ∈R1×m is the result of
the filtering at the m lattice points. In practice, we found that the matrix K is sometimes
too large to fit into GPU memory and we divided the matrix K into smaller pieces to
compute Eq. (A.1) sequentially.

In the general multi-dimensional case, the signal ` is of c dimensions. Then the kernel
B is of size c× t and K stores the c dimensional vectors accordingly. When the input
and output points are different, we slice only the input points and splat only at the output
points.
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A.3.2 Additional Experiments
In this section, we discuss more use-cases for the learned bilateral filters, one use-case
of BNNs and two single filter applications for image and 3D mesh denoising.

Recognition of subsampled MNIST

One of the strengths of the proposed filter convolution is that it does not require the
input to lie on a regular grid. The only requirement is to define a distance between
features of the input signal. We highlight this feature with the following experiment
using the classical MNIST ten class classification problem [159]. We sample a sparse
set of N points (x,y) ∈ [0,1]× [0,1] uniformly at random in the input image, use their
interpolated values as signal and the continuous (x,y) positions as features. This mimics
sub-sampling of a high-dimensional signal. To compare against a spatial convolution,
we interpolate the sparse set of values at the grid positions.

We take a reference implementation of LeNet [158] that is part of the Caffe project [136]
and compare it against the same architecture but replacing the first convolutional layer
with a bilateral convolution layer (BCL). The filter size and numbers are adjusted to get
a comparable number of parameters (5×5 for LeNet, 2-neighborhood for BCL).

The results are shown in Table A.1. We see that training on the original MNIST data
(column Original, LeNet vs. BNN) leads to a slight decrease in performance of the
BNN (99.03%) compared to LeNet (99.19%). The BNN can be trained and evaluated on
sparse signals, and we resample the image as described above for N = 100%, 60% and
20% of the total number of pixels. The methods are also evaluated on test images that are
subsampled in the same way. Note that we can train and test with different subsampling
rates. We introduce an additional bilinear interpolation layer for the LeNet architecture
to train on the same data. In essence, both models perform a spatial interpolation and
thus we expect them to yield a similar classification accuracy. Once the data is of higher
dimensions, the permutohedral convolution will be faster due to hashing the sparse input
points, as well as less memory demanding in comparison to naive application of a spatial
convolution with interpolated values.

Image Denoising

The main application that inspired the development of the bilateral filtering operation is
image denoising [15], there using a single Gaussian kernel. Our development allows to
learn this kernel function from data and we explore how to improve using a single but
more general bilateral filter.

We use the Berkeley segmentation dataset (BSDS500) [12] as a test bed. The color
images in the dataset are converted to gray-scale, and corrupted with Gaussian noise with
a standard deviation of 25

255 .
We compare the performance of four different filter models on a denoising task. The

first baseline model (‘Spatial’ in Table A.2, 25 weights) uses a single spatial filter with
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Test Subsampling
Method Original 100% 60% 20%

LeNet 0.9919 0.9660 0.9348 0.6434
BNN 0.9903 0.9844 0.9534 0.5767
LeNet 100% 0.9856 0.9809 0.9678 0.7386
BNN 100% 0.9900 0.9863 0.9699 0.6910
LeNet 60% 0.9848 0.9821 0.9740 0.8151
BNN 60% 0.9885 0.9864 0.9771 0.8214
LeNet 20% 0.9763 0.9754 0.9695 0.8928
BNN 20% 0.9728 0.9735 0.9701 0.9042

Table A.1: Classification accuracy on MNIST. We compare the LeNet [158] implemen-
tation that is part of Caffe [136] to the network with the first layer replaced by a bilat-
eral convolution layer (BCL). Both are trained on the original image resolution (first two
rows). Three more BNN and CNN models are trained with randomly subsampled images
(100%, 60% and 20% of the pixels). An additional bilinear interpolation layer samples
the input signal on a spatial grid for the CNN model.

a kernel size of 5 and predicts the scalar gray-scale value at the center pixel. The next
model (‘Gauss Bilateral’) applies a bilateral Gaussian filter to the noisy input, using
position and intensity features f = (x,y,v)>. The third setup (‘Learned Bilateral’, 65
weights) takes a Gauss kernel as initialization and fits all filter weights on the train set to
minimize the mean squared error with respect to the clean images. We run a combination
of spatial and permutohedral convolutions on spatial and bilateral features (‘Spatial +
Bilateral (Learned)’) to check for a complementary performance of the two convolutions.

Method PSNR

Noisy Input 20.17
Spatial 26.27
Gauss Bilateral 26.51
Learned Bilateral 26.58
Spatial + Bilateral (Learned) 26.65

Table A.2: PSNR results of a denoising task using the BSDS500 dataset [12]

The PSNR scores evaluated on full images of the test set are shown in Table A.2. We
find that an untrained bilateral filter already performs better than a trained spatial convo-
lution (26.27 to 26.51). A learned convolution further improve the performance slightly.
We chose this simple one-kernel setup to validate an advantage of the generalized bi-
lateral filter. A competitive denoising system would employ RGB color information and
also needs to be properly adjusted in network size. Multi-layer perceptrons have obtained
state-of-the-art denoising results [44] and the permutohedral lattice layer can readily be
used in such an architecture, which is intended future work.
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A.3.3 Additional results

This section contains more qualitative results for the experiments presented in Chapter 5.

Given Image 0.05.(x,y) 0.01.(x,y) 0.05.(r,g,b) 0.01.(r,g,b) 0.05.(x,y,r,g,b) 0.01.(x,y,r,g,b)

Figure A.10: Visualization of the Permutohedral Lattice. Sample lattice visualizations
for different feature spaces. All pixels falling in the same simplex cell are shown with
the same color. (x,y) features correspond to image pixel positions, and (r,g,b) ∈ [0,255]
correspond to the red, green and blue color values.

Lattice Visualization

Figure A.10 shows sample lattice visualizations for different feature spaces.

Color Upsampling

Some images of the upsampling for the Pascal VOC12 dataset are shown in Fig. A.11. It
is especially the low level image details that are better preserved with a learned bilateral
filter compared to the Gaussian case.
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(a) Inp. (b) Guidance (c) GT (d) Bicubic (e) Gauss-BF (f) Learned-BF

Figure A.11: Color Upsampling. Color 8× upsampling results using different methods,
from left to right, (a) Low-resolution input color image (Inp.), (b) Gray scale guidance
image, (c) Ground-truth color image; Upsampled color images with (d) Bicubic inter-
polation, (e) Gauss bilateral upsampling and, (f) Learned bilateral updampgling (best
viewed on screen).

Depth Upsampling

Figure A.12 presents some more qualitative results comparing bicubic interpolation,
Gauss bilateral and learned bilateral upsampling on NYU depth dataset image [231].

Character Recognition

Figure A.13 shows the schematic of different layers of the network architecture for
LeNet-7 [159] and DeepCNet(5, 50) [56, 100]. For the BNN variants, the first layer
filters are replaced with learned bilateral filters and are learned end-to-end.

Semantic Segmentation

Some more visual results for semantic segmentation are shown in Figure A.14. These
include the underlying DeepLab CNN[52] result (DeepLab), the 2 step mean-field re-
sult with Gaussian edge potentials (+2stepMF-GaussCRF) and also corresponding re-
sults with learned edge potentials (+2stepMF-LearnedCRF). In general, we observe that
mean-field in learned CRF leads to slightly dilated classification regions in comparison
to using Gaussian CRF thereby filling-in the false negative pixels and also correcting
some mis-classified regions.
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(a) Inp. (b) Guidance (c) GT (d) Bicubic (e) Gauss-BF (f) Learned-BF

Figure A.12: Depth Upsampling. Depth 8× upsampling results using different up-
sampling strategies, from left to right, (a) Low-resolution input depth image (Inp.),
(b) High-resolution guidance image, (c) Ground-truth depth; Upsampled depth images
with (d) Bicubic interpolation, (e) Gauss bilateral upsampling and, (f) Learned bilateral
updampgling (best viewed on screen).

Material Segmentation

In Fig. A.15, we present visual results comparing 2 step mean-field inference with Gaus-
sian and learned pairwise CRF potentials. In general, we observe that the pixels belong-
ing to dominant classes in the training data are being more accurately classified with
learned CRF. This leads to a significant improvements in overall pixel accuracy. This
also results in a slight decrease of the accuracy from less frequent class pixels thereby
slightly reducing the average class accuracy with learning. We attribute this to the type of
annotation that is available for this dataset, which is not for the entire image but for some
segments in the image. We have very few images of the infrequent classes to combat this
behaviour during training.

Experiment Protocols

Table A.3 shows experiment protocols of different experiments.
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(a) LeNet-7
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(b) DeepCNet

Figure A.13: CNNs for Character Recognition. Schematic of (top) LeNet-7 [159] and
(bottom) DeepCNet(5,50) [56, 100] architectures used in Assamese character recognition
experiments.
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Background Aeroplane Bicycle Bird Boat Bottle Bus Car
Cat Chair Cow Dining Table Dog Horse Motorbike Person

Potted Plant Sheep Sofa Train TV monitor

(a) Input (b) Ground Truth (c) DeepLab (d) +GaussCRF (e) +LearnedCRF

Figure A.14: Semantic Segmentation. Example results of semantic segmentation.
(c) depicts the unary results before application of MF, (d) after two steps of MF with
Gaussian edge CRF potentials, (e) after two steps of MF with learned edge CRF
potentials.
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Brick Carpet Ceramic Fabric Foliage Food Glass Hair
Leather Metal Mirror Other Painted Paper Plastic

Polished Stone Skin Sky Stone Tile Wallpaper Water Wood

(a) Input (b) Ground Truth (c) DeepLab (d) +GaussCRF (e) +LearnedCRF

Figure A.15: Material Segmentation. Example results of material segmentation. (c) de-
picts the unary results before application of MF, (d) after two steps of MF with Gaussian
edge CRF potentials, (e) after two steps of MF with learned edge CRF potentials.
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Data Statistics Training Protocol

Experiment Feature Types Feature Scales
Filter
Size

Filter
Nbr. Train Val. Test Loss Type LR Batch Epochs

Single Bilateral Filter Applications
2× Color Upsampling Position1 , Intensity (3D) 0.13, 0.17 65 2 10581 1449 1456 MSE 1e-06 200 94.5
4× Color Upsampling Position1 , Intensity (3D) 0.06, 0.17 65 2 10581 1449 1456 MSE 1e-06 200 94.5
8× Color Upsampling Position1 , Intensity (3D) 0.03, 0.17 65 2 10581 1449 1456 MSE 1e-06 200 94.5
16× Color Upsampling Position1 , Intensity (3D) 0.02, 0.17 65 2 10581 1449 1456 MSE 1e-06 200 94.5
Depth Upsampling Position1 , Color (5D) 0.05, 0.02 665 2 795 100 654 MSE 1e-07 50 251.6
Mesh Denoising Isomap (4D) 46.00 63 2 1000 200 500 MSE 100 10 100.0

DenseCRF Applications
Semantic Segmentation

- 1step MF
Position1 , Color (5D);
Position1 (2D) 0.01, 0.34; 0.34 665; 19 2; 2 10581 1449 1456 Logistic 0.1 5 1.4

- 2step MF
Position1 , Color (5D);
Position1 (2D) 0.01, 0.34; 0.34 665; 19 2; 2 10581 1449 1456 Logistic 0.1 5 1.4

- loose 2step MF
Position1 , Color (5D);
Position1 (2D) 0.01, 0.34; 0.34 665; 19 2; 2 10581 1449 1456 Logistic 0.1 5 +1.9

Material Segmentation
- 1step MF Position2 , Lab-Color (5D) 5.00, 0.05, 0.30 665 2 928 150 1798 Weighted Logistic 1e-04 24 2.6
- 2step MF Position2 , Lab-Color (5D) 5.00, 0.05, 0.30 665 2 928 150 1798 Weighted Logistic 1e-04 12 +0.7
- loose 2step MF Position2 , Lab-Color (5D) 5.00, 0.05, 0.30 665 2 928 150 1798 Weighted Logistic 1e-04 12 +0.2

Neural Network Applications
Tiles: CNN-9×9 - - 81 4 10000 1000 1000 Logistic 0.01 100 500.0
Tiles: CNN-13×13 - - 169 6 10000 1000 1000 Logistic 0.01 100 500.0
Tiles: CNN-17×17 - - 289 8 10000 1000 1000 Logistic 0.01 100 500.0
Tiles: CNN-21×21 - - 441 10 10000 1000 1000 Logistic 0.01 100 500.0
Tiles: BNN Position1 , Color (5D) 0.05, 0.04 63 1 10000 1000 1000 Logistic 0.01 100 30.0
LeNet - - 25 2 5490 1098 1647 Logistic 0.1 100 182.2
Crop-LeNet - - 25 2 5490 1098 1647 Logistic 0.1 100 182.2
BNN-LeNet Position2 (2D) 20.00 7 1 5490 1098 1647 Logistic 0.1 100 182.2
DeepCNet - - 9 1 5490 1098 1647 Logistic 0.1 100 182.2
Crop-DeepCNet - - 9 1 5490 1098 1647 Logistic 0.1 100 182.2
BNN-DeepCNet Position2 (2D) 40.00 7 1 5490 1098 1647 Logistic 0.1 100 182.2

Table A.3: Experiment Protocols. Experiment protocols for the different experiments
presented in this work. Feature Types: Feature spaces used for the bilateral convolu-
tions. Position1 corresponds to un-normalized pixel positions whereas Position2 corre-
sponds to pixel positions normalized to [0,1] with respect to the given image. Feature
Scales: Cross-validated scales for the features used. Filter Size: Number of elements
in the filter that is being learned. Filter Nbr.: Half-width of the filter. Train, Val. and
Test corresponds to the number of train, validation and test images used in the experi-
ment. Loss Type: Type of loss used for back-propagation. “MSE” corresponds to Eu-
clidean mean squared error loss and “Logistic” corresponds to multinomial logistic loss.
“Weighted Logistic” is the class-weighted multinomial logistic loss. We weighted the
loss with inverse class probability for material segmentation task due to the small avail-
ability of training data with class imbalance. LR: Fixed learning rate used in stochastic
gradient descent. Batch: Number of images used in one parameter update step. Epochs:
Number of training epochs. In all the experiments, we used fixed momentum of 0.9 and
weight decay of 0.0005 for stochastic gradient descent. “‘Color Upsampling” experi-
ments in this Table corresponds to those performed on Pascal VOC12 dataset images.
For all experiments using Pascal VOC12 images, we use extended training segmentation
dataset available from [108], and used standard validation and test splits from the main
dataset [77].
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A.4 Parameters and Additional Results for Video
Propagation Networks

In this Section, we present experiment protocols and additional qualitative results for
experiments on video object segmentation, semantic video segmentation and video color
propagation. Table A.4 shows the feature scales and other parameters used in different
experiments. Figures A.16 show some qualitative results on video object segmentation
with some failure cases in Fig. A.17. Figure A.18 shows some qualitative results on
semantic video segmentation and Fig. A.19 shows results on video color propagation.

Experiment Feature Type Feature Scale-1, Λa Feature Scale-2, Λb α

Input
Frames Loss Type

Video Object Segmentation (x,y,Y,Cb,Cr, t) (0.02,0.02,0.07,0.4,0.4,0.01) (0.03,0.03,0.09,0.5,0.5,0.2) 0.5 9 Logistic

Semantic Video Segmentation
with CNN1 [273]-NoFlow (x,y,R,G,B, t) (0.08,0.08,0.2,0.2,0.2,0.04) (0.11,0.11,0.2,0.2,0.2,0.04) 0.5 3 Logistic
with CNN1 [273]-Flow (x+ux ,y+uy ,R,G,B, t) (0.11,0.11,0.14,0.14,0.14,0.03) (0.08,0.08,0.12,0.12,0.12,0.01) 0.65 3 Logistic
with CNN2 [214]-Flow (x+ux ,y+uy ,R,G,B, t) (0.08,0.08,0.2,0.2,0.2,0.04) (0.09,0.09,0.25,0.25,0.25,0.03) 0.5 4 Logistic

Video Color Propagation (x,y, I, t) (0.04,0.04,0.2,0.04) No second kernel 1 4 MSE

Table A.4: Experiment Protocols. Experiment protocols for the different experiments
presented in this work. Feature Types: Feature spaces used for the bilateral convo-
lutions, with position (x,y) and color (R,G,B or Y,Cb,Cr) features ∈ [0,255]. ux, uy
denotes optical flow with respect to the present frame and I denotes grayscale intensity.
Feature Scales (Λa,Λb): Cross-validated scales for the features used. α: Exponential
time decay for the input frames. Input Frames: Number of input frames for VPN. Loss
Type: Type of loss used for back-propagation. “MSE” corresponds to Euclidean mean
squared error loss and “Logistic” corresponds to multinomial logistic loss.
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Figure A.16: Video Object Segmentation. Shown are the different frames in example
videos with the corresponding ground truth (GT) masks, predictions from BVS [180],
OFL [255], VPN (VPN-Stage2) and VPN-DLab (VPN-DeepLab) models.
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Figure A.17: Failure Cases for Video Object Segmentation. Shown are the differ-
ent frames in example videos with the corresponding ground truth (GT) masks, predic-
tions from BVS [180], OFL [255], VPN (VPN-Stage2) and VPN-DLab (VPN-DeepLab)
models.
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Input GT CNN +VPN(Ours)

Figure A.18: Semantic Video Segmentation. Input video frames and the corresponding
ground truth (GT) segmentation together with the predictions of CNN [273] and with
VPN-Flow.
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Figure A.19: Video Color Propagation. Input grayscale video frames and correspond-
ing ground-truth (GT) color images together with color predictions of Levin et al. [164]
and VPN-Stage1 models.
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A.5 Additional Material for Bilateral Inception
Networks

In this section of the Appendix, we first discuss the use of approximate bilateral filtering
in BI modules (Sec. A.5.1). Later, we present some qualitative results using different
models for the approach presented in Chapter 7 (Sec. A.5.2).

A.5.1 Approximate Bilateral Filtering
The bilateral inception module presented in Chapter 7 computes a matrix-vector product
between a Gaussian filter K and a vector of activations zc. Bilateral filtering is an im-
portant operation and many algorithmic techniques have been proposed to speed-up this
operation [199, 7, 91]. In the main paper we opted to implement what can be considered
the brute-force variant of explicitly constructing K and then using BLAS to compute the
matrix-vector product. This resulted in a few millisecond operation. The explicit way
to compute is possible due to the reduction to super-pixels, e.g., it would not work for
DenseCRF variants that operate on the full image resolution.

Here, we present experiments where we use the fast approximate bilateral filtering
algorithm of [7], which is also used in Chapter 5 for learning sparse high dimensional
filters. This choice allows for larger dimensions of matrix-vector multiplication. The rea-
son for choosing the explicit multiplication in Chapter 7 was that it was computationally
faster. For the small sizes of the involved matrices and vectors, the explicit computa-
tion is sufficient and we had no GPU implementation of an approximate technique that
matched this runtime. Also it is conceptually easier and the gradient to the feature trans-
formations (Λf) is obtained using standard matrix calculus.

Experiments

We modified the existing segmentation architectures analogous to those in Chapter 7.
The main difference is that, here, the inception modules use the lattice approximation [7]
to compute the bilateral filtering. Using the lattice approximation did not allow us to
back-propagate through feature transformations (Λ) and thus we used hand-specified
feature scales as will be explained later. Specifically, we take CNN architectures from
the works of [52, 279, 25] and insert the BI modules between the spatial FC layers.
We use superpixels from [66] for all the experiments with the lattice approximation.
Experiments are performed using Caffe neural network framework [136].

Semantic Segmentation The experiments in this section use the Pascal VOC12 seg-
mentation dataset [77] with 21 object classes and the images have a maximum resolution
of 0.25 megapixels. For all experiments on VOC12, we train using the extended training
set of 10581 images collected by [108]. We modified the DeepLab network architecture
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Model IoU Runtime(ms)

DeepLab 68.9 145ms

BI7(2)-BI8(10) 73.8 +600

DeepLab-CRF [52] 72.7 +830
DeepLab-MSc-CRF [52] 73.6 +880
DeepLab-EdgeNet [51] 71.7 +30
DeepLab-EdgeNet-CRF [51] 73.6 +860

Table A.5: Semantic Segmentation using the DeepLab model. IoU scores on the Pas-
cal VOC12 segmentation test dataset with different models and our modified inception
model. Also shown are the corresponding runtimes in milliseconds. Runtimes also in-
clude superpixel computations (300 ms with Dollar superpixels [66])

of [52] and the CRFasRNN architecture from [279] which uses a CNN with deconvolu-
tion layers followed by DenseCRF trained end-to-end.

DeepLab Model We experimented with the BI7(2)-BI8(10) inception model. Results
using the DeepLab model are summarized in Tab. A.5. Although we get similar im-
provements with inception modules as with the explicit kernel computation, using lattice
approximation is slower.

CRFasRNN Model We add BI modules after score-pool3, score-pool4, FC7 and FC8
1× 1 convolution layers resulting in the BI3(6)-BI4(6)-BI7(2)-BI8(6) model and also
experimented with another variant where BI8 is followed by another inception module,
G(6), with 6 Gaussian kernels. Note that here also we discarded both deconvolution and
DenseCRF parts of the original model [279] and inserted the BI modules in the base
CNN and found similar improvements compared to the inception modules with explicit
kernel computaion. See Tab. A.6 for results on the CRFasRNN model.

Material Segmentation Table A.7 shows the results on the MINC dataset [25] ob-
tained by modifying the AlexNet architecture with our inception modules. We observe
similar improvements as with explicit kernel construction. For this model, we do not
provide any learned setup due to very limited segment training data. The weights to
combine outputs in the bilateral inception layer are found by validation on the validation
set.

Scales of Bilateral Inception Modules Unlike the explicit kernel technique presented
in the main text (Chapter 7), we didn’t back-propagate through feature transformation (Λ)
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Model IoU (Val) IoU (Test)

CNN 67.5 -
DeconvNet(CNN+Deconvolutions) 69.8 72.0

BI3(6)-BI4(6)-BI7(2)-BI8(6) 71.9 -
BI3(6)-BI4(6)-BI7(2)-BI8(6)-G(6) 73.6 75.2

DeconvNet-CRF(CRF-RNN) [279] 73.0 74.7
Context-CRF-RNN [273] - 75.3

Table A.6: Semantic Segmentation using the CRFasRNN model. IoU score corre-
sponding to different models on Pascal VOC12 reduced validation / test segmentation
dataset. The reduced validation set consists of 346 images as used in [279] where we
adapted the model from.

Model Class / Total accuracy

AlexNet CNN 55.3 / 58.9

BI7(2)-BI8(6) 68.5 / 71.8
BI7(2)-BI8(6)-G(6) 67.6 / 73.1

AlexNet-CRF 65.5 / 71.0

Table A.7: Material Segmentation using AlexNet. Pixel accuracy of different models
on the MINC material segmentation test dataset [25].

using the approximate bilateral filter technique. So, the feature scales are hand-specified
and validated, which are as follows. The optimal scale values for the BI7(2)-BI8(2)
model are found by validation for the best performance which are σxy = (0.1, 0.1) for
the spatial (XY) kernel and σrgbxy = (0.1, 0.1, 0.1, 0.01, 0.01) for color and position
(RGBXY) kernel. Next, as more kernels are added to BI8(2), we set scales to be α*(σxy,
σrgbxy). The value of α is chosen as 1, 0.5, 0.1, 0.05, 0.1, at uniform interval, for the
BI8(10) bilateral inception module.

A.5.2 Qualitative Results
In this section, we present more qualitative results obtained using the BI module with
explicit kernel computation technique presented in Chapter 7. Results on the Pascal
VOC12 dataset [77] using the DeepLab-LargeFOV model are shown in Fig. A.20, fol-
lowed by the results on MINC dataset [25] in Fig. A.21 and on Cityscapes dataset [57]
in Fig. A.22.
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Background Aeroplane Bicycle Bird Boat Bottle Bus Car
Cat Chair Cow Dining Table Dog Horse Motorbike Person

Potted Plant Sheep Sofa Train TV monitor

(a) Input (b) Superpixels (c) GT (d) Deeplab (e) +DenseCRF (f) Using BI

Figure A.20: Semantic Segmentation. Example results of semantic segmentation on the
Pascal VOC12 dataset. (d) depicts the DeepLab CNN result, (e) CNN + 10 steps of mean-
field inference, (f result obtained with bilateral inception (BI) modules (BI6(2)+BI7(6))
between FC layers.
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Brick Carpet Ceramic Fabric Foliage Food Glass Hair
Leather Metal Mirror Other Painted Paper Plastic

Polished Stone Skin Sky Stone Tile Wallpaper Water Wood

(a) Input (b) Superpixels (c) GT (d) AlexNet (e) +DenseCRF (f) Using BI

Figure A.21: Material Segmentation. Example results of material segmentation. (d) de-
picts the AlexNet CNN result, (e) CNN + 10 steps of mean-field inference, (f) result
obtained with bilateral inception (BI) modules (BI7(2)+BI8(6)) between FC layers.
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(a) Input (b) Superpixels (c) GT (d) Deeplab (e) Using BI

Figure A.22: Street Scene Segmentation. Example results of street scene segmentation.
(d) depicts the DeepLab results, (e) result obtained by adding bilateral inception (BI)
modules (BI6(2)+BI7(6)) between FC layers.
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[108] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours
from inverse detectors. In ICCV, 2011.

[109] K. He, J. Sun, and X. Tang. Guided image filtering. PAMI, 2013.
[110] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolu-

tional networks for visual recognition. In ECCV, 2014.
[111] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

In CVPR, 2016.
[112] S. He, R. W. Lau, W. Liu, Z. Huang, and Q. Yang. Supercnn: A superpixelwise

convolutional neural network for salient object detection. ICCV, 2015.
[113] N. Heess, D. Tarlow, and J. Winn. Learning to Pass Expectation Propagation

Messages. In NIPS. 2013.
[114] J.-H. Heu, D.-Y. Hyun, C.-S. Kim, and S.-U. Lee. Image and video colorization

based on prioritized source propagation. In ICIP, 2009.
[115] G. E. Hinton. Mapping part-whole hierarchies into connectionist networks. Arti-

ficial Intelligence, 1990.
[116] G. E. Hinton, P. Dayan, B. J. Frey, and R. M. Neal. The wake-sleep algorithm for

unsupervised neural networks. Science, 1995.
[117] D. A. Hirshberg, M. Loper, E. Rachlin, and M. J. Black. Coregistration: simulta-

neous alignment and modeling of articulated 3d shape. In ECCV, 2012.
[118] T. K. Ho. Random decision forests. In ICDAR, 1995.
[119] A. Holub and P. Perona. A discriminative framework for modelling object classes.

In CVPR, 2005.
[120] B. K. P. Horn. Understanding image intensities. Artificial Intelligence, 1977.
[121] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neu-

ral networks, 1991.
[122] H. Hu and G. de Haan. Trained bilateral filters and applications to coding artifacts

reduction. In ICIP, 2007.
[123] T.-W. Hui, C. C. Loy, and X. Tang. Depth map super-resolution by deep multi-

scale guidance. In ECCV, 2016.
[124] K. Hukushima and K. Nemoto. Exchange Monte Carlo method and application to

spin glass simulations. Journal of the Physical Society of Japan, 1996.

166



Bibliography

[125] A. T. Ihler and D. A. McAllester. Particle belief propagation. In AISTATS, 2009.
[126] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix backpropagation for deep

networks with structured layers. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 2965–2973, 2015.

[127] T. S. Jaakkola, D. Haussler, et al. Exploiting generative models in discriminative
classifiers. Advances in neural information processing systems, pages 487–493,
1999.

[128] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial trans-
former networks. In NIPS, 2015.

[129] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. Structural-rnn: Deep learning
on spatio-temporal graphs. arXiv preprint arXiv:1511.05298, 2015.

[130] S. D. Jain and K. Grauman. Supervoxel-consistent foreground propagation in
video. In ECCV, 2014.

[131] V. Jampani, S. M. A. Eslami, D. Tarlow, P. Kohli, and J. Winn. Consensus message
passing for layered graphical models. In AISTATS, 2015.

[132] V. Jampani, R. Gadde, and P. V. Gehler. Efficient facade segmentation using auto-
context. In WACV, 2015.

[133] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation networks. In CVPR,
2017.

[134] V. Jampani, M. Kiefel, and P. V. Gehler. Learning sparse high dimensional filters:
Image filtering, dense CRFs and bilateral neural networks. In CVPR, 2016.

[135] V. Jampani, S. Nowozin, M. Loper, and P. V. Gehler. The informed sampler:
A discriminative approach to bayesian inference in generative computer vision
models. CVIU, 2015.

[136] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In ACM Multimedia, 2014.

[137] J. Jiang and Z. Tu. Efficient scale space auto-context for image segmentation and
labeling. In CVPR, 2009.

[138] H. Jungong, S. Ling, X. Dong, and J. Shotton. Enhanced computer vision with
Microsoft Kinect sensor: A review. IEEE Transactions on Cybernetics, 2013.

[139] R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal. Markov chain Monte Carlo
in practice: A roundtable discussion. The American Statistician, 1998.

[140] I. Kemelmacher-Shlizerman and R. Basri. 3d face reconstruction from a single
image using a single reference face shape. PAMI, 2011.

[141] A. Khoreva, F. Perazzi, R. Benenson, B. Schiele, and A. Sorkine-Hornung.
Learning video object segmentation from static images. arXiv preprint
arXiv:1612.02646, 2016.

[142] M. Kiefel and P. V. Gehler. Human pose estimation with fields of parts. In ECCV.
2014.

[143] M. Kiefel, V. Jampani, and P. V. Gehler. Permutohedral lattice CNNs. In ICLR
Workshops, 2015.

167



Bibliography

[144] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[145] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[146] P. Kohli and P. H. Torr. Dynamic graph cuts for efficient inference in markov
random fields. PAMI, 2007.

[147] D. Koller and N. Friedman. Probabilistic graphical models: Principles and tech-
niques (adaptive computation and machine learning series). 2009.

[148] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele. Joint bilateral upsam-
pling. ToG, 2007.

[149] A. Korattikara, Y. Chen, and M. Welling. Austerity in MCMC land: Cutting the
Metropolis-Hastings budget. arXiv preprint arXiv:1304.5299, 2013.
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