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1. Parameters and Additional Results
In this supplementary, we present experiment protocols and additional qualitative results for experiments on video object

segmentation, semantic video segmentation and video color propagation. Table 1 shows the feature scales and other parame-
ters used in different experiments. Figures 1, 2 show some qualitative results on video object segmentation with some failure
cases in Fig. 3. Figure 4 shows some qualitative results on semantic video segmentation and Fig. 5 shows results on video
color propagation.

Experiment Feature Type Feature Scale-1, Λa Feature Scale-2, Λb α
Input

Frames Loss Type

Video Object Segmentation (x, y, Y, Cb, Cr, t) (0.02,0.02,0.07,0.4,0.4,0.01) (0.03,0.03,0.09,0.5,0.5,0.2) 0.5 9 Logistic

Semantic Video Segmentation
with CNN1 [5]-NoFlow (x, y, R,G,B, t) (0.08,0.08,0.2,0.2,0.2,0.04) (0.11,0.11,0.2,0.2,0.2,0.04) 0.5 3 Logistic

with CNN1 [5]-Flow (x+ux, y+uy, R,G,B, t) (0.11,0.11,0.14,0.14,0.14,0.03) (0.08,0.08,0.12,0.12,0.12,0.01) 0.65 3 Logistic

with CNN2 [3]-Flow (x+ux, y+uy, R,G,B, t) (0.08,0.08,0.2,0.2,0.2,0.04) (0.09,0.09,0.25,0.25,0.25,0.03) 0.5 4 Logistic

Video Color Propagation (x, y, I, t) (0.04,0.04,0.2,0.04) No second kernel 1 4 MSE

Table 1. Experiment Protocols. Experiment protocols for the different experiments presented in this work. Feature Types: Feature spaces
used for the bilateral convolutions, with position (x, y) and color (R,G,B or Y,Cb, Cr) features ∈ [0, 255]. ux, uy denotes optical
flow with respect to the present frame and I denotes grayscale intensity. Feature Scales (Λa,Λb): Validated scales for the features used.
α: Exponential time decay for the input frames. Input Frames: Number of input frames for VPN. Loss Type: Type of loss used for
back-propagation. “MSE” corresponds to Euclidean mean squared error loss and “Logistic” corresponds to multinomial logistic loss.
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Figure 1. Video Object Segmentation. Shown are the different frames in example videos with the corresponding ground truth (GT) masks,
predictions from BVS [2], OFL [4], VPN (VPN-Stage2) and VPN-DLab (VPN-DeepLab) models.
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Figure 2. Video Object Segmentation. Shown are the different frames in example videos with the corresponding ground truth (GT) masks,
predictions from BVS [2], OFL [4], VPN (VPN-Stage2) and VPN-DLab (VPN-DeepLab) models.
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Figure 3. Failure Cases for Video Object Segmentation. Shown are the different frames in example videos with the corresponding ground
truth (GT) masks, predictions from BVS [2], OFL [4], VPN (VPN-Stage2) and VPN-DLab (VPN-DeepLab) models.
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Figure 4. Semantic Video Segmentation. Input video frames and the corresponding ground truth (GT) segmentation together with the
predictions of CNN [5] and with VPN-Flow.
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Figure 5. Video Color Propagation. Input grayscale video frames and corresponding ground-truth (GT) color images together with color
predictions of Levin et al. [1] and VPN-Stage1 models.
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