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In Section 1, we formally define the Acheivable Segmentation Accuracy (ASA)
used for evaluating superpixels. Then, in Section 2, we report F-measure and
Compactness scores with more visual results on different datasets. We also in-
clude a supplementary video1 that gives an overview of Superpixel Sampling
Networks (SSN) with a glimpse of experimental results.

1 Evaluation Metrics

Here, we formally define the Achievable Segmentation Accuracy (ASA) met-
ric that is used in the main paper. Given an image I with n pixels, let H ∈
{0, 1, · · · ,m}n×1 denotes the superpixel segmentation with m superpixels. H is
composed of m disjoint segments, H =

⋃m
j=1H

j , where jth segment is repre-

sented as Hj . Similarly, let G ∈ {0, 1, · · · , w}n×1 denotes ground-truth (GT)
segmentation with w segments. G =

⋃w
l=1G

l, where Gl denotes lth GT segment.

ASA Score. The ASA score between a given superpixel segmentation H and
the GT segmentation G is defined as

ASA(H,G) =
1

n

∑
Hj∈S

max
Gl
|Hj ∩Gl|, (1)

where |Hj∩Gl| denotes the number of overlapping pixels between Sj and Gl.
To compute ASA, we first find the GT segment that overlaps the most with each
of the superpixel segments and then sum the number of overlapping pixels. As
a normalization, we divide the number of overlapping pixels with the number of
image pixels n. In other words, ASA represents an upper bound on the accuracy
achievable by any segmentation step performed on the superpixels.

Boundary Precision-Recall. Boundary Recall (BR) measures how well the
boundaries of superpixel segmentation aligns with the GT boundaries. Higher
BR score need not correspond to higher quality of superpixels. Superpixels with
high BR score can be irregular and may not be useful in practice. Following
reviewers’ suggestions, we report Boundary Precision-Recall curves instead of
just Boundary Recall scores.

1 https://www.youtube.com/watch?v=q37MxZolDck

https://www.youtube.com/watch?v=q37MxZolDck
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(a) Compactness.
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(b) F-measure.

Fig. 1: BSDS500 test results. (a) Compactness and (b) F-measure plots. SSNdeep

outperforms other techniques also in terms of F-measure while maintaing the same
compactness as that of SSNpix.

We also report F-measure and Compactness in the next section (Section 2.1).
We use the evaluation scripts from [8] with default parameters to compute
Boundary Precision-Recall, F-measure and Compactness.

2 Additional Experimental Results

2.1 Compactness and F-measure

We compute compactness (CO) of different superpixels on the BSDS dataset
(Fig. 1(a)). SSN superpixels have only slightly lower CO compared to widely-
used SLIC showing the practical utility of SSN. SSNdeep has similar CO as
SSNpix showing that training SSN, while improving ASA and boundary adher-
ence, does not destroy compactness. More importantly, we find SSN to be flexible
and responsive to task-specific loss functions and one could use more weight (λ)
for the compactness loss (Eq. 6 in the main paper) if more compact superpixels
are desired. In addition, we also plot F-measure scores in Fig. 1(b). In summary,
SSNdeep also outperforms other techniques in terms of F-measure while main-
taining the compactness as that of SSNpix. This shows the robustness of SSN
with respect to different superpixel aspects.

2.2 Additional Visual Results

In this section, we present additional visual results of different techniques and
on different datasets. Figs. 2, 3 and 4 show superpixel visual results on three
segmentation benchmarks of BSDS500 [2], Cityscapes [4] and PascalVOC [5] re-
spectively. For comparisons, we show the superpixels obtained with 3 existing
superpixel techniques of SLIC [1], LSC [6] and ERS [7]. Fig. 5 shows additional
visual results on MPI-Sintel [3] where we present sample segmented flows ob-
tained using different types of superpixels.
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Fig. 2: Additional visual results on BSDS500 test images. SSNdeep tends to
produce smoother object contours and more superipxels near object boundaries in
comparison to other superpixel techniques.

Input GT Segments SLIC LSC ERS SSNdeep (Ours)

Fig. 3: Additional visual results on Cityscapes validation images. SSNdeep tend
to generate bigger superpixels on uniform regions (such as road) and more superpixels
on smaller objects.
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Fig. 4: Additional visual results on PascalVOC validation images. SSNdeep

tends to produce smoother object contours and more superipxels near object boundaries
in comparison to other superpixel techniques.
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Fig. 5: Additional visual results on Sintel images. Segmented flow visuals ob-
tained with different types of superpixels indicate that SSNdeep superpixels can better
represent GT optical flow compared to other techniques.
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