

Code: https://varunjampani.github.io/scops/

Object Part Segmentation

Advantages

- Natural dense representation for non-rigid objects.
- Landmarks are sometimes ill-defined around part boundaries.

Supervised Methods

- Defining semantic part class is hard.
- Collecting annotation is also hard. [PASCAL-Part]

Proposed Method – Self-Supervised Co-Part Segmentation

Given an image collection of an object category, the objective is to discover consistent part segments across images.

Desired Properties as Loss Functions

- Geometric concentration.
- Robustness to variations.
- Semantic consistency.
- Objects as union of parts.

[PASCAL-Part Dataset]

Concentration and Equivariance Loss 3

Concentration Loss

Penalize part responses in areas far from part centric:

$$\mathcal{L}_{con} = \sum_{k} \sum_{u,v} \frac{||\langle u, v \rangle - \langle c_{u}^{k}, c_{v}^{k} \rangle||^{2} \cdot \mathbf{R}(k, u, v)/z_{k}}{|\mathbf{1}|^{2} \cdot \mathbf{R}(k, u, v)/z_{k}}$$
Pixel Pos. Part Centric Part Response

Equivariance Loss

- Segmentation should be consistent w.r.t. perturbation.
- Proposed in unsupervised landmark estimation, we extend it to segmentation.

SCOPS: Self-Supervised Co-Part Segmentation

Wei-Chih Hung¹, Varun Jampani², Sifei Liu², Pavlo Molchanov² Ming-Hsuan Yang¹ and Jan Kautz² ¹ UCMERCED ² IVIDIA

A end-to-end trainable method that learns object part segmentation without pixel-wise annotation.

Part Segmentation Network

Semantic Consistency Loss Pre-trained Feature Extractor

Semantic Saliency Consistency Constraint Loss L_{sc} $R \sqcup$ • ⊗ → Part Segmentation Network Orthonormal Constraint L_{SC} Semantic Part Basis

 $\{w_k\}$

Simultaneously learn part basis and pixel clusters

1000 Iterations

	Experimenta							
Landmarks on CelebA (Faces)								
-	Method	Error (%)						
	ULD (K=8)	40.82						
	DFF (K=8)	31.30						
	SCOPS (K=4)	21.76						

SCOPS (K=8)

Foreground Segmentation on PASCAL (IOU)

class	horse	cow	sheep	aero	bus	car	motor
DFF	49.51	56.39	51.03	48.38	58.63	56.48	54.80
DFF+CRF	50.96	57.64	52.29	50.87	58.64	57.56	55.86
SCOPS	55.76	60.79	56.95	69.02	73.82	65.18	58.53
SCOPS+CRF	57.92	62.70	58.17	80.54	75.32	66.14	59.15

LONG BEACH CALIFORNIA June 16-20, 2019

Common Objects

Experimental Results

Landmarks on CUB (Birds)								
Method	CUB-001	CUB-002	CUB-003					
ULD DFF	30.12 22.42	29.36 21.62	28.19 21.98					
SCOPS	18.50	18.82	21.07					

References

ULD-1: Thewlis, J. et al. Unsupervised learning of object landmarks by factorized spatial embeddings. In ICCV, 2017.

ULD-2: Zhang, Y. et al. Unsupervised discovery of object landmarks as structural representations. In *CVPR*, 2018.

DFF: Collins E. et al. Deep feature factorization for concept discovery. In ECCV, 2018.