SCOPS: Self-Supervised Co-Part Segmentation

Wei-Chih Hung\(^1\), Varun Jampani\(^2\), Sifei Liu\(^2\), Pavlo Molchanov\(^2\)
Ming-Hsuan Yang\(^1\) and Jan Kautz\(^2\)

\(^1\)UC MERCED \(^2\)NVIDIA

A end-to-end trainable method that learns object part segmentation without pixel-wise annotation.

Object Part Segmentation

Advantages
- Natural dense representation for non-rigid objects.
- Landmarks are sometimes ill-defined around part boundaries.

Proposed Method – Self-Supervised Co-Part Segmentation
- Given an image collection of an object category, the objective is to discover consistent part segments across images.

Desirable Properties as Loss Functions

- Geometric concentration.
- Robustness to variations.
- Semantic consistency.
- Objects as union of parts.

Concentration and Equivariance Loss

Concentration Loss
- Penalize part responses in areas far from part-centric:

\[L_c = \sum_{i} \log \left(1 + \exp \left(-R(u, v)_{i}x_{i} \right) \right) \]

Equivariance Loss
- Segmentation should be consistent w.r.t. perturbation.
- Proposed in unsupervised landmark estimation, we extend it to segmentation.

Semantic Consistency Loss

\[L_s = \sum_{i} \left(V(u, v)_{i} - \sum \frac{R(u, v)_{i} w_{j}}{ || w_{j} ||^2 } \right)^2 \]

Push semantic part basis \(w_j \) to be an orthonormal basis.

Results Visualization

Ablation Studies

Common Objects

Experimental Results

Landmarks on CelebA (Faces)

Landmarks on CUB (Birds)

References

Code: https://varunjampani.github.io/scops/