

Bilateral Convolution Layer (BCL) on Point Clouds

Originally introduced in [3], BCL includes:

- Splat: BCL first interpolates points onto a permutohedral lattice.
- 2. <u>Convolve</u>: convolution is performed over the sparsely populated lattice vertices.
- 3. <u>Slice</u>: the filtered signal is interpolated back onto the original point locations.

Efficient sparse high-dim. filtering:

• hash table & permutohedral lattice

	<u>Two</u>	separa	te set
	Image		
	point	(r,g,b)	f()
	feature		
	lattice	(x, y)	(<i>x</i> , <i>y</i>)
	feature	(, , y)	
_	Point cloud		
	point	1	(x, y, z)
_	feature	T	
	lattice	$(\gamma \gamma \tau)$	(x, y, z)
_	feature	(x, y, z)	
	(x, y)	, Z)	(8x, 8y, 8)

hsu@cs.umass.edu; {vjampani, deqings}@nvidia.com

SPLATNet: Sparse Lattice Networks for Point Cloud Processing Hang Su^{1,2}, Varun Jampani², Deqing Sun², Subhransu Maji¹, Evangelos Kalogerakis¹, Ming-Hsuan Yang^{2,3}, Jan Kautz² ¹UMassAmherst ² IVIDIA ³UCMERCED

SPLATNet operates on point clouds directly and allows joint 2D-3D processing Code: https://github.com/nvlabs/splatnet

3 Architectures: SPLATNet_{3D} and SPLATNet_{2D-3D} 1×1 Conv $\lambda_0/2$ $\lambda_0/16$ Input 3D point cloud 1×1 Conv → 1×1 Conv SPLATNet_{3D} $\frac{\text{BCL}}{2\text{D} \rightarrow 3\text{D}}$ 1×1 Conv ⊣ 1×1 Conv CNN₁ BCL Input images $3D \rightarrow 2D$ SPLATNet_{2D-3D} CNN_2 ⊕ concatenation

s of features \rightarrow "what" feature \rightarrow "where" (r,g,b)f(...) (n_x, n_y, n_z) (x, y, z) (n_x, n_y, n_z)

<u>Control over filter receptive fields</u>

- Varying receptive field sizes can help capture information from multiple scales.
- This can be easily achieved by simply scaling lattice features.

D & 3D data	Input image Ground-truth Ou	ar prediction
IoU runtime (min) t _{2D-3D} [5] 62.9 87 -3D 69.8 1.2		
	IoU	runtime (min)
	Autocontext _{2D} $[5]$ 60.5	117 146
	2D CNN [6] only 69.3	0.84
Ours (<i>SPLATNET_{2D-3D}</i>)	SPLATNet _{2D-3D} 70.6	4.34

	class	instance
	avg. IoU	avg. IoU
	79.0	81.4
	74.9	79.4
⁻ k [9]	77.4	82.3
8]	80.4	83.7
+ [10]	81.9	85.1
NN [11]	82.0	84.7
D	82.0	84.6
2D-3D	83.7	85.4

We propose SPLATNet for efficient and flexible processing directly on point clouds. It can also incorporate 2D images for seamless joint 2D-3D learning.

[4] H. Riemenschneider et al. Learning where to classify in multi-view semantic segmentation. ECCV'14. [5] R. Gadde et al. Efficient 2D and 3D facade segmentation using auto-context. PAMI'17. [6] L.-C. Chen et al. Semantic image segmentation with

[7] L. Yi et al. A scalable active framework for region annotation in 3D shape collections. SIGGRAPH Asia'16. [8] C. R. Qi et al. PointNet: Deep learning on point sets for 3D classification and segmentation. CVPR'17. [9] R. Klokov and V. Lempitsky. Escape from cells: Deep Kd-Networks for the recognition of 3D point cloud models. ICCV'17

[10] C. R. Qi et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space. NIPS'17. [11] L. Yi et al. SyncSpecCNN: Synchronized spectral CNN for 3D shape segmentation. CVPR'17