
Originally introduced in [3], BCL includes:

1. Splat: BCL first interpolates points onto

a permutohedral lattice.

2. Convolve: convolution is performed over

the sparsely populated lattice vertices.

3. Slice: the filtered signal is interpolated

back onto the original point locations.

Efficient sparse high-dim. filtering:
• hash table & permutohedral lattice

Control over filter receptive fields

• This can be easily achieved by 

simply scaling lattice features. 
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Challenges in Point Cloud Processing1
SPLATNet operates on point clouds directly and allows joint 2D-3D processing

Code: https://github.com/nvlabs/splatnet

Traditional CNNs are not a good fit for point clouds: 
• Point clouds are sets of sparse, unordered points;

• Traditional CNNs operate on dense, regular grids.

Pre-processing into voxels or 2D projections: 
• Loss of details

• Artifacts

• Computational overheads

Bilateral Convolution Layer (BCL) on Point Clouds2

Facade Semantic Segmentation4
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Architectures: SPLATNet3D and SPLATNet2D-3D3

class 
avg. IoU

instance
avg. IoU

Yi et al. [7] 79.0 81.4
3DCNN [8] 74.9 79.4
Kd-network [9] 77.4 82.3
PointNet [8] 80.4 83.7
PointNet++ [10] 81.9 85.1
SyncSpecCNN [11] 82.0 84.7
SPLATNet3D 82.0 84.6
SPLATNet2D-3D 83.7 85.4

with only 3D data

IoU
runtime 

(min)
OctNet [1] 59.2 -
Autocontext3D [5] 54.4 16
SPLATNet3D 65.4 0.06

with both 2D & 3D data

IoU
runtime 

(min)
Autocontext2D-3D [5] 62.9 87
SPLATNet2D-3D 69.8 1.2

IoU
runtime 

(min)
Autocontext2D [5] 60.5 117
Autocontext2D-3D [5] 62.7 146
2D CNN [6] only 69.3 0.84
SPLATNet2D-3D 70.6 4.34Ground-truthInput point cloud Ours (SPLATNET2D-3D)
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ShapeNet Part Segmentation5
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Inconsistent labels         Confusing labels

↑ signs of performance saturation
on the benchmark!

Conclusion6
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Two separate sets of features

Smooth projection between 2D&3D

• Many sensors output 3D points and 

2D images simultaneously. 

• Images can provide complementary 

information to 3D data, and is also 

often less noisy.

We propose SPLATNet for efficient and flexible processing directly on point

clouds. It can also incorporate 2D images for seamless joint 2D-3D learning.

• Varying receptive 

field sizes can help 

capture information 

from multiple scales. • We achieve 

this capability 

by a special 

type of BCL. 

Splatting 2D data (given (𝑙, 𝑥, 𝑦, 𝑧)) into 3D 
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