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SPLATNet: Sparse Lattice Networks for Point Cloud Processing

Hang Sul, Varun Jampani4, Deging Sun?, Subhransu Majil, Evangelos Kalogerakis!, Ming-Hsuan Yang4-3, Jan Kautz?

Traditional CNNs are not a good fit for point clouds:
Point clouds are sets of sparse, unordered points;
Traditional CNNs operate on dense, regular grids.

Pre-processing into voxels or 2D projections:

Loss of detalls
Artifacts
Computational overheads
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OctNet [1] MVCNN [2]

Originally introduced in [3], BCL includes:
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Splat: BCL first interpolates points onto
a permutohedral lattice.

Convolve: convolution is performed over
the sparsely populated lattice vertices.
Slice: the filtered signal is interpolated
back onto the original point locations.

Efficient sparse high-dim. filtering:

hash table & permutohedral lattice
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Input images

24 Bilateral Convolution Layer (BCL) on Point Clouds

Two separate sets of features
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Code: https://github.com/nvlabs/splatnet

BCL

(P concatenation \_

Ao/ 2

1X1C0nv]—[ BCL ]—[

+ )

e

BCL
10/16

3D predlctlon
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3D prediction
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2D predictions

Control over filter receptive fields

Smooth projection between 2D&3D

Varying receptive
field sizes can help
capture information !
from multiple scales.”

This can be easily achieved by
simply scaling lattice features.
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« Many sensors output 3D points and
2D images simultaneously.

* |mages can provide complementary
information to 3D data, and is also
often less noisy.

 We achieve
this capability
by a special
type of BCL.
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2D Segmentations

Splatting 2D data (given (I, x,y, z)) into 3D

AN Facade Semantic Segmentation

with only 3D data

Ruemonge2014 [4]

with both 2D & 3D data

runtime
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OctNet [1]
Autocontext, [5]

59.2 -
54.4 16

Autocontext, 55 [5] 62.9 87

Input pomt cloud

Ground-truth

Ours (SPLATNET )

ShapeNet Part Segmentation
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Input image Ground-truth Our prediction

runtime

oV (min)

117
146
0.84

Autocontext,, [5]  60.5
Autocontext,p 5 [5] 62.7
2D CNN [6] only 69.3

class instance
avg. loU avg. loU

¥,

Yietal. [7]
3DCNN [8]
Kd-network [9]
PointNet [8]
PointNet++ [10]
SyncSpecCNN [11]

79.0 31.4
74.9 79.4
77.4 82.3
380.4 83.7
381.9 85.1
32.0 34.7

Incorrect labels Incomplete labels

Confusmg labels

Inconsistent labels

1 signs of performance saturation

on the benchmark!

We propose SPLATNet for efficient and flexible processing directly on point
clouds. It can also incorporate 2D images for seamless joint 2D-3D learning.

References:

[1] G. Riegler et al. Octnet: Learning deep 3D
representations at high resolutions. CVPR'17.

[2] H. Su et al. Multi-view convolutional neural networks
for 3D shape recognition. ICCV'15.

[3] V. Jampani et al. Learning sparse high dimensional
filters: Image filtering, dense CRFs and bilateral neural
networks. CVPR'16.

[4] H. Riemenschneider et al. Learning where to classify
in multi-view semantic segmentation. ECCV’14.

[5] R. Gadde et al. Efficient 2D and 3D facade
segmentation using auto-context. PAMI'17.

[6] L.-C. Chen et al. Semantic image segmentation with
deep convolutional nets and fully connected CRFs.
ICLR'15.

[7] L. Yietal. A scalable active framework for region
annotation in 3D shape collections. SIGGRAPH Asia'16.

[8] C. R. Qi et al. PointNet: Deep learning on point sets
for 3D classification and segmentation. CVPR'17.

[9] R. Klokov and V. Lempitsky. Escape from cells: Deep
Kd-Networks for the recognition of 3D point cloud
models. ICCV'17.

[10] C. R. Qi et al. PointNet++: Deep hierarchical feature
learning on point sets in a metric space. NIPS'17.,

[11] L. Yiet al. SyncSpecCNN: Synchronized spectral
CNN for 3D shape segmentation. CVPR'17.




